Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An appreciation of the structures of the oligosaccharide chains which become attached to biomolecules (the process known as glycosylation), and their relevance to the biological function of the molecule concerned, has progressed rapidly in recent years with developments in site-selective protein glycosylation, oligosaccharide synthesis and in vivo targeting of oligosaccharides. These developments have necessitated the parallel development of effective analytical tools for the determination of the structures of glycosylation. The conclusion of studies in the 1980s and 1990s was that high pH anion exchange chromatography (HPAEC) was the most effective HPLC mode for the analysis of glycosylation. It allowed the fractionation of complex mixtures of monosaccharides or oligosaccharides, the latter in terms of charge, size, composition, anomerity and intra-chain linkages. This review reinvestigates whether HPAEC still appears to offer the most effective means of analysing glycosylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.1514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!