The vast majority of investigations into the bioavailability and toxicity of explosives to receptors in aquatic environments has focused on deriving toxicity metrics for discrete chemical exposures to single species using pure compounds at relatively high concentrations. This study assessed the environmental fate and potential for biological effects of a common military formulation, Composition B, under more realistic exposure scenarios (e.g., those that more closely simulate a breached artillery round or residual exposure following a low-order detonation). We used a novel approach incorporating multiple species and toxicity endpoints in sediment exposures over a 34-d exposure period. Composition B fragments exposed at the sediment surface rapidly released 2,4,6-trinitrotolune (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the overlying water column. In comparison, burial of fragments resulted in dramatically reduced exposure, bioconcentration, and toxicity. The addition of a conservative flow rate to the aquaria also reduced water and tissue concentrations by factors of two to three. Although the exposure system likely represented a worst-case scenario relative to most conditions found in coastal and estuarine environments, overlying water concentrations generally did not approach known toxicity thresholds, while porewater concentrations were sufficiently elevated above toxicity thresholds immediately adjacent to the fragments, limiting hazardous exposure only to very localized scales. Bioconcentration correlated closely with observed toxicity and was either not detectable (buried), or low (exposed), as is expected based on the low hydrophobicities of TNT and RDX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.153 | DOI Listing |
J Environ Manage
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:
The control of internal pollution was important throughout the restoration of the lake, especially the removal of sediment internal nitrogen. Experiments involving incubation were conducted in this study to investigate the effects of iron remediation on nitrogen in both water and sediment. Adding iron with varying dosage had different effects on the nutrients content and other properties of water and sediment in remediation.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergence Coastal Research, Seoul National University, Siheung-si, Gyeonggi-do 15011, Republic of Korea. Electronic address:
The ecosystem regulating services from tidal flats, such as removal of organic pollutants, provided by natural tidal flats are being increasingly recognized, yet quantitative evaluation remains limited. Here we evaluated a nationwide capacity of natural purification in tidal flats. Using in situ sediments from five along the Korean coast (Incheon, Gunsan, Sinan, Gwangyang, and Busan), we applied a mesocosm system informed by 18 years of riverine monitoring data from national surveys.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States.
Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.
View Article and Find Full Text PDFSci Rep
January 2025
Mining College, Guizhou University, Guiyang, 550025, China.
The factors leading to mine water inrush accidents are mainly sources of water, water channels, and intensity of water inrush. Mine water rush depends mostly on whether damage leads to the overlying strata of the working face penetrating the overlying aquifer. There is therefore a need to characterize how the overlying strata of the coal seam roof fails and the development height of the water-conducting fracture zone during a roof water inrush incident.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Facultad de Pesquería, Universidad Nacional Agraria La Molina, Av. La Molina S/N, La Molina, Lima 15024, Peru.
Paracas Bay, located in the Humboldt Current system, is a highly variable coastal environment where hypoxia (dissolved oxygen concentrations <2 mg L) has been reported as a persistent feature of bottom conditions. In addition to hypoxia, milky water events have been reported in the bay, most likely associated with the presence of sulfides (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!