Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.58 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia.
The abundance of chemical elements in the blood of horses can indicate the physiological balance, health of animal as well as can be taken as an indicator of environmental pollution. The aim of this work was to analyse haematological, biochemical parameters, TOS, FRAP, SOD, Gpx, TAS and their correlations with concentrations of essential and risk elements in blood of horses stabled in two different locations: The National Stud Farm Topoľčianky (n = 11; 11 stallions, consisting of the breeds 6 Lipizzan, 3 Slovak warmblood, 2 Holsteiner) and Experimental Centre at Institute of Animal Husbandry, SUA in Nitra (n = 10; 4 stallions, 5 geldings, 1 mare, 4 stallions, 5 geldings and 1 mare, consisting of the breeds 3 Slovak warmblood, 4 Czech warmblood, 3 Holsteiner). Blood samples were obtained from horses (n = 21) from two localities in the Slovak Republic during May.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA.
A copper-catalyzed enantioselective synthesis of borylated 1-pyrrolines from γ,δ-unsaturated oxime esters is reported. Twenty-four novel 1-pyrroline derivatives are reported in yields ranging from 26% to 96% and enantioselectivities from 74.5:25.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratory for Structural Engineering and Sustainable Catalysis, Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!