Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains harbouring plasmid pMccB17. We have isolated two mutations that strongly reduce the production of MccB17. These mutations, which map at 96 min on the E. coli chromosome, define a new gene that we have called pmbA. A chromosomal DNA fragment of about 13 kb, including the wild-type pmbA allele, was cloned into a mini-Mu plasmid vector. pmbA was located within the cloned DNA fragment by insertional mutagenesis and deletion analysis. The nucleotide sequence of a 1.7 kb DNA region containing the gene was determined. pmbA encodes a hydrophilic protein of 450-amino-acid residues with a predicted molecular size of 48375D, which was visualized in polyacrylamide gels. Protein profiles of cellular envelope and soluble fractions from cells with plasmids overproducing PmbA indicated that it is cytoplasmic. Physiological experiments suggested that pmbA mutants synthesize a molecule (pro-MccB17) able to inhibit DNA replication but unable to be released from cells. We propose that PmbA facilitates the secretion of the antibiotic by completing its maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.1990.tb02041.x | DOI Listing |
J Phys Chem Lett
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada. Electronic address:
Cytochromes P450 (P450s) are a superfamily of heme-containing enzymes possessing a broad range of monooxygenase activities. One such activity is O-demethylation, an essential and rate-determining step in emerging strategies to valorize lignin that employ carbon-carbon bond cleavage. We recently identified PbdA, a P450 from Rhodococcus jostii RHA1, and PbdB, its cognate reductase, which catalyze the O-demethylation of para-methoxylated benzoates (p-MBAs) to initiate growth of RHA1 on these compounds.
View Article and Find Full Text PDFAdv Mater
September 2024
Joint Centre of Translational Medicine, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Polymyxins have been regarded as an efficient therapeutic against many life-threatening, multidrug resistant Gram-negative bacterial infections; however, the cytotoxicity and emergence of drug resistance associated with polymyxins have greatly hindered their clinical potential. Herein, the reaction-induced self-assembly (RISA) of polymyxins and natural aldehydes in aqueous solution is presented. The resulting assemblies effectively mask the positively charged nature of polymyxins, reducing their cytotoxicity.
View Article and Find Full Text PDFTalanta
October 2024
Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315302, PR China. Electronic address:
Bacterial infection is a great threat to human health. Lateral flow immunoassays (LFIAs) with the merits of low cost, quick screening, and on-site detection are competitive technologies for bacteria detection, but their detection limits depend on the optical performance of the adopted nanotags. Herein, we presented a LFIA platform for bacteria detection using polydopamine (PDA) functionalized Au nanoparticles (denoted as Au@PDA) as the nanotag.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2024
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
Designing luminophores bright in both isolate species and aggregate states is of great importance in many emerging cutting-edge applications. However, the conventional luminophores either emit in isolate species but quench in aggregate state or emit in aggregate state but darken in isolate species. Here we demonstrate that the precise regulation of noncovalent interactions can realize luminophores bright in both isolate species and aggregate states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!