In the present study the use of phage display as a screening tool to determine primary toxicological targets was investigated. These primary toxicological targets are the targets in the cell with which a chemical compound initially interacts and that are responsible for consecutive (toxic) effects. Nickel was used as model compound for the present study. By selection of Ni-binding peptides out of a 12-mer peptide phage library, it was possible to identify primary toxicological targets of Ni (and other metals). The selected Ni-binding peptides showed similarities to important primary toxicological targets of Ni, such as the hydrogenase nickel incorporation protein (hypB) and the Mg/Ni/Co transporter (corA). This shows that phage display, which is already widely used in other research fields, also has potential in ecotoxicology, as a novel screening tool with which to determine primary toxicological targets of chemical compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.38 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!