The toxicity of cadmium to aquatic organisms is well known, but the mechanisms of toxicity are not as clearly understood. In the present study, Cd bioassay experiments incorporating both traditional endpoints and novel thiol-based endpoints were conducted with Chlamydomonas reinhardtii. The results were compared with results from previous bioassay experiments to probe the apparent contrasting biochemical mechanisms of toxicity of copper and cadmium as expressed in cellular glutathione and the glutathione cycle. Total glutathione and reduced to oxidized glutathione ratio (GSH/GSSG) measurements were remarkably different in Cd- compared with Cu-exposed cells. Whereas total glutathione in cells decreased with increasing Cu concentration, Cd caused dramatic increases. Total glutathione increased by 4.5-fold with 80 nM Cd treatment over concentrations in Cd-free controls. Glutathione reductase (GR) enzyme activity was positively correlated (r(2) (Cu) = 0.96, r(2) (Cd) = 0.85) with glutathione concentrations for both metals. Measurements of mRNA for GR were increased 2-fold in response to Cd exposure (80 nM) and correlated well with GR enzyme activity. Glutathione concentrations and GR enzyme activity are useful endpoints for both Cu and Cd toxicity in algae, even though the metals elicit opposing responses. We conclude that Cu decreases glutathione concentrations by inhibiting GR enzyme activity. In contrast, Cd stimulates GR enzyme activity and increases glutathione concentrations as cells respond to Cd-induced stress by producing increased antioxidant capacity. The present study demonstrates that determining the glutathione response in cells is important for understanding the metal-specific mechanisms of toxicity and that these associated novel endpoints may be useful metrics for accurately predicting toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.6 | DOI Listing |
An Acad Bras Cienc
January 2025
Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50760-420 Recife, PE, Brazil.
Matrix metalloproteinases (MMP) have been identified as biomarkers for several diseases, including cancer. The increase in the expression of these enzymes has been related to greater tumor aggressiveness. MMP-26 is expressed constitutively in the endometrium and some cancer cells of epithelial origin.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China.
The plasma-activated water (PAW) containing numerous reactive species can facilitate chitin degradation. Given the intricate interplay between PAW treatment and the diverse activities of chitinolytic enzymes, further investigation is imperative for enhancing the chitin bioconversion efficiency. This study revealed that PAW-treated chitin exhibited improved degradability toward LPMO10A, endochitinases ChtI, ChtII-B4C1, and exochitinase Chi-h.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63130.
bradyzoites reside in tissue cysts that undergo cycles of expansion, rupture, and release to foster chronic infection. The glycosylated cyst wall acts as a protective barrier, although the processes responsible for formation, remodeling, and turnover are not understood. Herein, we identify a noncanonical chitinase-like enzyme TgCLP1 that localizes to micronemes and is targeted to the cyst wall after secretion.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation.
View Article and Find Full Text PDFNano Lett
January 2025
Chemical Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
The existence of the phenomenon of enhanced enzyme diffusion (EED) has been a topic of debate in recent literature. One proposed mechanism to explain the origin of EED is oligomeric enzyme dissociation. We used mass photometry (MP), a label-free single-molecule technique, to investigate the dependence of the oligomeric states of several enzymes on their ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!