Our purpose in this study was to examine the potential usefulness of liquid-crystal display (LCD) monitors having the capability of rendering higher than 8 bits in display-bit depth. An LCD monitor having the capability of rendering 8, 10, and 12 bits was used. It was calibrated to the grayscale standard display function with a maximum luminance of 450 cd/m(2) and a minimum of 0.75 cd/m(2). For examining the grayscale resolution reported by ten observers, various simple test patterns having two different combinations of luminance in 8, 10, and 12 bits were randomly displayed on the LCD monitor. These patterns were placed on different uniform background luminance levels, such as 0, 50, and 100%, for maximum luminance. All observers participating in this study distinguished a smaller difference in luminance than one gray level in 8 bits irrespective of background luminance levels. As a result of the adaptation processes of the human visual system, observers distinguished a smaller difference in luminance as the luminance level of the test pattern was closer to the background. The smallest difference in luminance that observers distinguished was four gray levels in 12 bits, i.e., one gray level in 10 bits. Considering the results obtained by use of simple test patterns, medical images should ideally be displayed on LCD monitors having 10 bits or greater so that low-contrast objects with small differences in luminance can be detected and for providing a smooth gradation of grayscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-008-0051-0 | DOI Listing |
PLoS One
January 2025
College of Landscape Architecture and Art, Jiangxi Agricultural University, Nanchang, China.
With the rapid development of artificial intelligence technology, an increasing number of village-related modeling problems have been addressed. However, first, the exploration of village-related watershed fine-grained classification problems, particularly the multi-view watershed fine-grained classification problem, has been hindered by dataset collection limitations; Second, village-related modeling networks typically employ convolutional modules for attentional modeling to extract salient features, yet they lack global attentional feature modeling capabilities; Lastly, the extensive number of parameters and significant computational demands render village-related watershed fine-grained classification networks infeasible for end-device deployment. To tackle these challenges, we introduce a multi-view attention mechanism designed for precise watershed classification, leveraging knowledge distillation techniques, abbreviated as MANet-KD.
View Article and Find Full Text PDFSci Rep
January 2025
School of Aerospace Engineering, Gyeongsang National University, Jinju-si, 52828, Gyeongsangnam-do, Republic of Korea.
This study introduces a novel deep learning-based technique for predicting pressure distribution images, aimed at application in image-based approximate optimal design. The proposed approach integrates both unsupervised and supervised learning paradigms, employing autoencoders (AE) for the unsupervised component and fully connected neural networks (FNN) for the supervised component. A surrogate model based on 2D image data was developed, enabling a comparative analysis of three distinct methods: the conventional AE, the convolutional autoencoder (CAE), and a hybrid CAE, which combines the CAE with a conventional AE.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States.
Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation.
View Article and Find Full Text PDFBiochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!