Eremothecium ashbyi is a phytopathogenic fungus infesting cotton, soybeans and several other plants. This highly flavinogenic fungus has been phylogenetically characterized, but the genetic aspects of its central metabolic and riboflavin biosynthetic pathways are unknown. An ORF of 996 bp was obtained from E. ashbyi by using degenerate primers for glyceraldehyde-3-phosphate dehydrogenase (GPD) through reverse transcriptase polymerase chain reaction (RT-PCR) and 5'-3' rapid amplification of cDNA ends (RACE-PCR). This nucleotide sequence had a high similarity of 88% with GPD sequence of Ashbya gossypii. The putative GPD peptide of 331-aa had a high similarity of 85% with the GPD sequence from other ascomycetes. The ORF had an unusually strong codon bias with 5 amino acids showing strict preference of a single codon. The theoretical molecular weight for the putative peptide was 35.58 kDa with an estimated pI of 5.7. A neighbor-joining tree showed that the putative peptide from E. ashbyi displayed the highest similarity to GPD of A. gossypii. The gene sequence is available at the GenBank, accession number EU717696. Homology modeling done with Kluyveromyces marxianus GPD (PDB: 2I5P) as template indicated high structural similarity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11046-010-9357-7 | DOI Listing |
RMD Open
December 2024
The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.
Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.
J Fungi (Basel)
December 2024
Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife 52171-900, Brazil.
Anthracnose caused by species is the most important disease of chayote () in Brazil. The etiology of chayote anthracnose has been assigned to the species , an important plant pathogenic fungus also reported as the causal agent of anthracnose in other cucurbits worldwide. However, there is no recent survey of the species causing anthracnose in chayote in Brazil.
View Article and Find Full Text PDFPlant Dis
December 2024
Chiang Mai University, Biology, Room 2410/00, SCB2 building, Faculty of Science, Chiang Mai University,239 Huay Kaew Road, Suthep, Muang, Chiang Mai Province, Thailand, 50200;
Peacock plant (Calathea orbifolia (Linden) H.A.Kenn.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2024
the First Clinical College, Nanjing University of Chinese Medicine Nanjing 210029, China the Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029, China.
This study investigated the effects of Agrimoniae Herba-Coptidis Rhizoma(XHC-HL)-medicated serum on the proliferation, migration, invasion, and apoptosis of human colorectal cancer HT29 and HCT116 cells via the autophagy mediated by lysosome-associated membrane protein type 2A(LAMP2A). Bioinformatics analysis was conducted to explore the role of LAMP2A in the development and progression of colorectal cancer. Western blot(WB) was used to detect the expression of LAMP2A protein in colorectal cancer cell lines.
View Article and Find Full Text PDFAutophagy
December 2024
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China.
RETREG1/FAM134B is known for its role as a reticulophagy receptor. Our previous study established that RETREG1 is upregulated in hepatocellular carcinoma (HCC) and contributes to disease progression by activating the AKT signaling pathway. However, the specific mechanisms underlying the elevated expression of RETREG1 in HCC remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!