The canonical TGF-β signalling pathway involves Smad transcription factors through direct serine phosphorylation of the carboxy termini, nuclear translocation and regulation of transcription by receptor-regulated (R)-Smad complexes. Smads can also be phosphorylated in the linker region most prominently by the action of mitogen-activated protein (MAP) kinases, which in turn have been activated by TGF-β or a multitude of other growth factors and hormones. Linker region phosphorylation can prevent nuclear translocation of Smads and inhibit TGF-β signalling, potentially leading to oncogenesis. However, some evidence has revealed that linker region phosphorylated Smads can be translocated to the nucleus where they regulate transcription particularly of the synthesis of extracellular matrix molecules. Matrix molecules such as collagen and proteoglycans are involved in diseases such a fibrosis and atherosclerosis, respectively, and the involvement of linker region phosphorylation may represent a new therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115152 | PMC |
http://dx.doi.org/10.1007/s00018-010-0514-4 | DOI Listing |
J Immunother Cancer
December 2024
Swiss Institute of Bioinformatics, Lausanne, Switzerland
Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.
View Article and Find Full Text PDFBiochem J
January 2025
University of Pittsburgh School of Medicine, Pittsburgh, United States.
The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!