4.6 nm-sized aminosilane-modified maghemite (γ-Fe(2)O(3)) nanoparticles (aMNPs) were synthesized and encapsulated into onion-type multilamellar vesicles of soybean phosphatidylcholine (90%mol) and monoolein (10%mol). The magnetic multilamellar vesicles were obtained by shearing lipids with an aqueous dispersion of the preformed aMNPs (ferrofluid). The influence of ferrofluid concentration on the stability of the constitutive lamellar phase and the resulting dispersed onions was analyzed by small-angle X-ray diffraction (SAXD) and cryo-TEM imaging, respectively. When [Fe(III)] <60 mM, stable, magnetic onions were produced with aMNPs inserted inside onion water compartments as isolated or aggregated particles. Encapsulation efficiencies were measured by EPR spectroscopy and magnetic measurements: much higher values (up to 75%) than unilamellar liposomes were found. The deduced aMNP-to-onion ratio increased with ferrofluid concentration before reaching a maximal value of ca. 45 as confirmed by cryo-TEM imaging. When [Fe(III)] >60 mM, uni- or oligolamellar vesicles in addition to onions formed, probably because of a two-phase separation between an aMNP-rich phase and an aMNP-containing lamellar phase as revealed by SAXD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp00231c | DOI Listing |
Int J Nanomedicine
August 2020
Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok 15-222, Poland.
Background: Therapeutic efficiency of ceragenins against cancers may be limited by lack of their hemocompatibility when high concentrations of molecules are required to reach a desired result. Synergistic effects observed upon administration of anticancer agents and metal nanoparticles may provide an opportunity to limit toxicity of immobilized ceragenins on the surface of metal nanoparticles and to improve their therapeutic efficiency at the same time. The aim of present work is to investigate the anticancer activities and hemocompatibility of nanoformulations consisting of ceragenin CSA-131 united with aminosilane-modified iron oxide-based magnetic nanoparticles (MNP) and prepared by 1) covalent bonding (MNP@CSA-131) or 2) by combining CSA-131 with MNP in 1:1 ratio (CSA-131 + MNP).
View Article and Find Full Text PDFNanomedicine
February 2011
Centre de Recherche Paul Pascal (CNRS, UPR8641) - Université Bordeaux, Pessac, France.
Unlabelled: Lipid-based multilamellar vesicles loaded with aminosilane-modified maghemite nanoparticles (a-MNPs), also called magnetonions (MO), were analyzed for their magnetic resonance imaging (MRI) contrast agent properties. They were shown to be better T(2)-MRI contrast agents than commercial contrast agents and other reported liposome-based contrast agents as shown by their higher value of relaxivity ratio (r(2)/r(1) = 17), although a lower magnetic field intensity was used (0.2 T).
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2010
CNRS, UPR 8641, Centre de Recherche Paul Pascal, 115 avenue du Dr Albert Schweitzer, Pessac, F-33600, France.
4.6 nm-sized aminosilane-modified maghemite (γ-Fe(2)O(3)) nanoparticles (aMNPs) were synthesized and encapsulated into onion-type multilamellar vesicles of soybean phosphatidylcholine (90%mol) and monoolein (10%mol). The magnetic multilamellar vesicles were obtained by shearing lipids with an aqueous dispersion of the preformed aMNPs (ferrofluid).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!