Simultaneous templating of polymer nanocapsules and entrapped silver nanoparticles.

Chem Commun (Camb)

Institute for Nanomaterials Development and Innovation at the University of Memphis (INDIUM) and Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.

Published: October 2010

Nanorattles made of hollow polymer nanocapsules with entrapped silver nanoparticles were synthesized in one step by using lipid vesicles as templates. Free radical photoinitiator facilitated both polymerization within the bilayer and formation of metal nanoparticles in the aqueous core.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cc01988gDOI Listing

Publication Analysis

Top Keywords

polymer nanocapsules
8
nanocapsules entrapped
8
entrapped silver
8
silver nanoparticles
8
simultaneous templating
4
templating polymer
4
nanoparticles nanorattles
4
nanorattles hollow
4
hollow polymer
4
nanoparticles synthesized
4

Similar Publications

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

Barcoded screening identifies nanocarriers for protein delivery to kidney.

Nat Commun

January 2025

School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, P.R. China.

Targeted protein delivery with nanocarriers holds significant potential to enhance therapeutic outcomes by precisely directing proteins to specific organs or tissues. However, the complex interactions between nanocarriers and the biological environment pose considerable challenges in designing effective targeted delivery vehicles. In this study, we address this challenge by leveraging DNA-barcoded high-throughput screening.

View Article and Find Full Text PDF

Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative.

View Article and Find Full Text PDF

Nanoencapsulation of (Lam) DC-Essential Oil and Controlled Release: Experiments and Modeling.

Pharmaceutics

December 2024

Unit Operations Lab, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681-Prédio 30, Bloco F, Sala 208, Porto Alegre 90619-900, Brazil.

Degradation by physical and chemical agents affects the properties of essential oils; therefore, this study aimed to protect the volatile compounds present in essential oils through biopolymer encapsulation. The (Lam) DC. essential oil was obtained by steam distillation at 2.

View Article and Find Full Text PDF

Biomaterials for Corneal Regeneration.

Adv Sci (Weinh)

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!