We discuss the design and fabrication of 80-cm-diameter random phase plates for target-plane beam smoothing on the Nova laser. Random phase plates have been used in a variety of inertial confinement fusion target experiments, such as studying direct-drive hydrodynamic stability and producing spatially smooth x-ray backlighting sources. These phase plates were produced by using a novel sol-gel dip-coating technique developed by us. The sol-gel phase plates have a high optical damage threshold at the second- and third-harmonic wavelengths of the Nd:glass laser and have excellent optical performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.32.002543 | DOI Listing |
This Letter introduces a method for identifying the fast axis and phase retardation of wave plates by means of polarization common-path vortex interferometry. The technique utilizes a composite polarized vortex beam interacting with the wave plate under test. By analyzing the azimuth angle of the dark fringe in the interference pattern, the wave plate's characteristics are accurately extracted.
View Article and Find Full Text PDFMid-to-far-infrared (IR) spectral content is recorded using the novel self-balanced and self-phase-corrected electro-optical (EO) sampling arrangement. Self-balancing guarantees that the electric field emerging from the EO crystal yields a signal of zero via a Wollaston prism and balanced photodetector (i.e.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, Valbonne, France.
The introduction of high-performance TLC (HPTLC) instrumentation that allows precise control of critical parameters has transformed the technique into an efficient and rapid tool for analyzing various metabolites, namely lipids. Although mass spectrometry (MS) has largely replaced lipid analysis techniques over recent decades due to its comprehensive lipidome profiling capabilities, it typically lacks the rapidity and simplicity of TLC. HPTLC remains advantageous due to its ease of use, simpler data interpretation, and compatibility with complementary techniques.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Phayathai Road Pathumwan, 10330, Thailand.
This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!