Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present literature on ektacytometry, small angle light scattering by ellipsoidal red blood cells is commonly approximated by Fraunhofer diffraction. Calculations on a sphere with the size and relative refractive index of a red cell, however, show that Fraunhofer diffraction deviates significantly from exact Mie theory. Anomalous diffraction is found to be a much better approximation. The anomalous diffraction theory is used to calculate the intensity distribution of the light scattered by an ellipsoidally deformed red blood cell. The derived expression shows that the ellipticity of isointensity curves in forward scattered light are equal to the ellipticity of the red blood cell. The theoretical expression is fitted to the intensity patterns measured with an ektacytometer. For the small observation angles used in ektacytometry, the experimental results confirm the validity of the anomalous diffraction approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.32.002266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!