A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement of the cell-loading efficiency of biomaterials by inoculation with stem cell-based microspheres, in osteogenesis. | LitMetric

In critical-size bone defects, autologous or allogenic cells are required in addition to compatible biomaterials for the successful defect healing. State of the art inoculation methods of biomaterials are based on the application of cell suspensions to the biomaterial. However, only less amounts of cells can be applied and sufficient adhesion to the material is required. Therefore, it was investigated whether the advantages of stem cell-based microspheres and insoluble collagenous bone matrix (ICBM) scaffolds can be combined which can lead to an advancement in cell seeding on biomaterials. Microspheres were produced from unrestricted somatic stem cells from human umbilical cord blood and were mounted on ICBM scaffolds. Following the incubation with osteogenic or control medium, the constructs were analyzed histologically after 3, 7, 14, and 28 days. Alizarin Red S and von Kossa staining revealed microsphere mineralization after 3 days in osteogenic and after 14 days in control medium. Meanwhile, a time-dependent increase in tissue, growing out of the microspheres, was detected. Our results provide evidence that microsphere-ICBM constructs are promising candidates for approaches of bone regeneration. They allow the transfer of substantially high numbers of cells in partially mineralized constructs.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328210377675DOI Listing

Publication Analysis

Top Keywords

stem cell-based
8
cell-based microspheres
8
icbm scaffolds
8
control medium
8
improvement cell-loading
4
cell-loading efficiency
4
biomaterials
4
efficiency biomaterials
4
biomaterials inoculation
4
inoculation stem
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!