Objective: Prolonged human immunodeficiency virus-1 (HIV-1) infection leads to neurological debilitation, including motor dysfunction and frank dementia. Although pharmacological control of HIV infection is now possible, HIV-associated neurocognitive disorders (HAND) remain intractable. Here, we report that chronic treatment with erythropoietin (EPO) and insulin-like growth factor-I (IGF-I) protects against HIV/gp120-mediated neuronal damage in culture and in vivo.

Methods: Initially, we tested the neuroprotective effects of various concentrations of EPO, IGF-I, or EPO+IGF-I from gp120-induced damage in vitro. To assess the chronic effects of EPO+IGF-I administration in vivo, we treated HIV/gp120-transgenic or wild-type mice transnasally once a week for 4 months and subsequently conducted immunohistochemical analyses.

Results: Low concentrations of EPO+IGF-I provided neuroprotection from gp120 in vitro in a synergistic fashion. In vivo, EPO+IGF-I treatment prevented gp120-mediated neuronal loss, but did not alter microgliosis or astrocytosis. Strikingly, in the brains of both humans with HAND and gp120-transgenic mice, we found evidence for hyperphosphorylated tau protein (paired helical filament-I tau), which has been associated with neuronal damage and loss. In the mouse brain following transnasal treatment with EPO+IGF-I, in addition to neuroprotection we observed increased phosphorylation/activation of Akt (protein kinase B) and increased phosphorylation/inhibition of glycogen synthase kinase (GSK)-3beta, dramatically decreasing downstream hyperphosphorylation of tau. These results indicate that the peptides affected their cognate signaling pathways within the brain parenchyma.

Interpretation: Our findings suggest that chronic combination therapy with EPO+IGF-I provides neuroprotection in a mouse model of HAND, in part, through cooperative activation of phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling. This combination peptide therapy should therefore be tested in humans with HAND.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733362PMC
http://dx.doi.org/10.1002/ana.22070DOI Listing

Publication Analysis

Top Keywords

neuronal damage
12
insulin-like growth
8
growth factor-i
8
human immunodeficiency
8
neurocognitive disorders
8
humans hand
8
epo+igf-i
6
erythropoietin insulin-like
4
factor-i protects
4
neuronal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!