Novel technology to provide an enriched therapeutic cell concentrate from bone marrow aspirate.

Biotechnol Prog

Smith & Nephew, Biologics and Spine, York Science Park, Heslington, York YO10 5DF, UK.

Published: May 2011

Current strategies to repair fractures rely on orthopaedic surgeons harvesting bone from one area of the body, typically pelvis and transferring it to the fracture site. The amount of tissue available is therefore limited, requiring a second surgical procedure and often causing the patient long term pain. An alternative approach is utilise therapeutic cells contained within bone marrow aspirate during the primary procedure. The number of therapeutic cells within a fresh aspirate is insufficient to provide clinically acceptable bone healing in a timescale that is satisfactory to the surgeon and the patient. Therefore methods to efficiently concentrate bone marrow in the clinical setting are required. Centrifugation is the current method of choice but has limitations in that it requires large capital equipment, servicing and there are potential issues of tissue contamination. We have developed a novel, acoustically-assisted filtration device that addresses these limitations, delivering a concentrated bone marrow in a point of care, single use, fully disposable, compact device. An additional advantage is that the level of concentration required can be specified by the end user. The resulting bone marrow concentrate has been characterised in terms of cell number, viability and osteogenic potential using flow cytometry and alkaline phosphatase assay. When compared to recent clinical studies using bone marrow to repair non-union fractures, the findings from our work suggest that the bone marrow concentrate is likely to be highly therapeutic and clinically efficacious as a bone fracture repair strategy. A product concept for use in the clinical setting is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.460DOI Listing

Publication Analysis

Top Keywords

bone marrow
28
bone
10
concentrate bone
8
marrow aspirate
8
therapeutic cells
8
clinical setting
8
marrow concentrate
8
marrow
7
novel technology
4
technology provide
4

Similar Publications

The accessibility of CAR-T cells in centralized production models faces significant challenges, primarily stemming from logistical complexities and prohibitive costs. However, European Regulation EC No. 1394/2007 introduced a pivotal provision known as the hospital exemption.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

A novel variant in the ABCA1 gene for Tangier Disease with diffuse histiocytosis of bone marrow.

J Clin Lipidol

December 2024

Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, 3004-561, Coimbra, Portugal.

Tangier disease is an extremely rare autosomal recessive monogenic disorder caused by mutations in the ATP binding cassette transporter A1 gene (ABCA1). It is characterized by severe deficiency or absence of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA1), with highly variable clinical presentations depending on cholesterol accumulation in macrophages across different tissues. We report a case of a 47-year-old man with very low HDL-C and very high triglyceride levels, initially attributed to the patient's metabolic syndrome, alcohol abuse, and splenomegaly.

View Article and Find Full Text PDF

Background: Myelodysplastic syndromes/neoplasms (MDS) are a diverse group of clonal myeloid disorders. Advances in molecular technology lead to the development of new classification systems. However, large-scale epidemiological studies on MDS in Asian countries are currently scarce.

View Article and Find Full Text PDF

Prognostic Value of Dynamic Measurable Residual Disease Monitoring by Multiflowcytometry in Elderly Patients With Nonintensively Treated Acute Myeloid Leukemia.

Clin Lymphoma Myeloma Leuk

January 2025

Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Electronic address:

Purpose: The clinical prognostic value of monitoring minimal residual disease (MRD) in acute myeloid leukemia (AML) patients undergoing nonintensive treatment remains insufficiently established. The aim of this work was to examine MRD status at various time points, highlighting the potential for pre-emptive therapy to improve patient outcomes.

Methods: Inpatient data from 2017 to 2024 were used in this retrospective study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!