Recent studies have indicated that the force-extension properties of single molecules of double stranded (ds) DNA are sensitive to the presence of small molecule DNA binding agents, and also to their mode of binding. These observations raise the possibility of using this approach as a highly sensitive tool for the screening of such agents. However, particularly for studies employing the atomic force microscope (AFM), several non-trivial barriers hinder the progress of this approach to the non-specialist arena and hence also the full realization of this possibility. In this paper, we therefore address a series of key reproducibility and metrological issues associated with this type of measurement. Specifically, we present an improved immobilization method that covalently anchors one end (5' end) of a dual labelled (5'-thiol, 3'-biotin) p53 DNA molecule onto a gold substrate via gold-thiol chemistry, whilst the biotinylated 3' end is available for 'pick-up' using a streptavidin modified AFM tip. We also show that co-surface immobilization of DNA with 6-mercapto-1-hexanol (MCH) can also lead to a further increase the measured contour length. We demonstrate the impact of these improved protocols through the observation of the cooperative transition plateau in a DNA fragment of approximately 118 bp, a significantly smaller fragment than previously investigated. The results of a comparative study of the effects of a model minor groove binder (Hoechst 33258) and an intercalating drug (proflavine), alone, as a mixture and under different buffer conditions, are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/16/10/055DOI Listing

Publication Analysis

Top Keywords

dna binding
8
binding agents
8
agents studies
8
dna
6
progressing single
4
single biomolecule
4
biomolecule force
4
force spectroscopy
4
spectroscopy measurements
4
measurements screening
4

Similar Publications

Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.

View Article and Find Full Text PDF

Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.

View Article and Find Full Text PDF

Activation and memory of the heatshock response is mediated by Prion-like domains of sensory HSFs in Arabidopsis.

Mol Plant

January 2025

Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!