Molecular O(2) and CO(2) are the primary substrate and product of aerobic metabolism, respectively. Levels of these physiologic gases in the cell microenvironment vary dramatically both in health and in diseases, such as chronic inflammation, ischemia, and cancer, in which metabolism is significantly altered. The identification of the hypoxia-inducible factor led to the discovery of an ancient and direct link between tissue O(2) and gene transcription. In this study, we demonstrate that mammalian cells (mouse embryonic fibroblasts and others) also sense changes in local CO(2) levels, leading to altered gene expression via the NF-κB pathway. IKKα, a central regulatory component of NF-κB, rapidly and reversibly translocates to the nucleus in response to elevated CO(2). This response is independent of hypoxia-inducible factor hydroxylases, extracellular and intracellular pH, and pathways that mediate acute CO(2)-sensing in nematodes and flies and leads to attenuation of bacterial LPS-induced gene expression. These results suggest the existence of a molecular CO(2) sensor in mammalian cells that is linked to the regulation of genes involved in innate immunity and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1000701DOI Listing

Publication Analysis

Top Keywords

mammalian cells
12
innate immunity
8
immunity inflammation
8
molecular co2
8
hypoxia-inducible factor
8
gene expression
8
co2
5
nf-κb links
4
links co2
4
co2 sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!