Methanobactin (mb) is a low molecular mass copper-binding molecule analogous to iron-binding siderophores. The molecule is produced by many methanotrophic or methane oxidizing bacteria (MOB), but has only been characterized to date in one MOB, Methylosinus trichosporium OB3b. To explore the potential molecular diversity in this novel class of metal binding compound, the spectral (UV-visible, fluorescent, and electron paramagnetic resonance) and thermodynamic properties of mb from two γ-proteobacterial MOB, Methylococcus capsulatus Bath and Methylomicrobium album BG8, were determined and compared to the mb from the α-proteobacterial MOB, M. trichosporium OB3b. The mb from both γ-proteobacterial MOB differed from the mb from M. trichosporium OB3b in molecular mass and spectral properties. Compared to mb from M. trichosporium OB3b, the extracellular concentrations were low, as were copper-binding constants of mb from both γ-proteobacterial MOB. In addition, the mb from M. trichosporium OB3b removed Cu(I) from the mb of both γ-proteobacterial MOB. Taken together the results suggest mb may be a factor in regulating methanotrophic community structure in copper-limited environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2010.08.002 | DOI Listing |
Front Bioeng Biotechnol
August 2024
Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France.
Methane (CH) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China.
Aerobic methane (CH) oxidation coupled to denitrification (AME-D) is a promising process for the denitrification of low C/N wastewater. Compared with anaerobic denitrifying bacteria, aerobic denitrifying bacteria may enable AME-D have high denitrification ability under aerobic conditions. This study constructed a novel aerobic methane oxidation coupled to aerobic denitrification (AME-AD) system using the typical aerobic denitrifying bacteria Paracoccus pantotrophus ATCC35512 and the typical aerobic methane oxidizing bacteria Methylosinus trichosporium OB3b.
View Article and Find Full Text PDFMethods Enzymol
August 2024
Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, United States. Electronic address:
ACS Synth Biol
August 2024
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States.
Aerobic methanotrophs, or methane-consuming microbes, are strongly dependent on copper for their activity. To satisfy this requirement, some methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin (MB). In addition to playing a critical role in methanotrophy, MB has also been shown to have great promise in treating copper-related human diseases, perhaps most significantly Wilson's disease.
View Article and Find Full Text PDFMicrob Cell Fact
May 2024
Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
Background: Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!