Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts.

Heart Rhythm

Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK.

Published: December 2010

Background: Epifluorescence imaging using voltage-sensitive dyes has provided unique insights into cardiac electrical activity and arrhythmias. However, conventional dyes use blue-green excitation light, which has limited depth penetration.

Objective: The aim of this study was to demonstrate that combining a short and a long excitation wavelength using near-infrared (NIR) dyes allows for epifluorescence imaging of transmural electrophysiological properties in intact hearts.

Methods: Epifluorescence imaging was performed in rat hearts (N = 11) using DI-4-ANEPPS and the NIR dye DI-4-ANBDQBS. Activation and action potential duration (APD) patterns were investigated at 2 excitation wavelengths (530 and 660 nm) after epicardial stimulation at various cycle lengths (160 to 70 ms).

Results: Optical action potential upstrokes acquired with 660-nm excitation of DI-4-ANBDQBS were significantly longer than upstrokes obtained with 530-nm excitation of DI-4-ANEPPS (P < .001). Comparison of activation maps showed counterclockwise rotation of isochrones consistent with a transmural rotation of myofibers. Pronounced APD modulation by the activation sequence was observed at both excitation wavelengths. Significantly prolonged APDs (P = .016) and steeper APD restitution curves were found with DI-4-ANBDQBS (660-nm excitation) when compared with DI-4-ANEPPS (530-nm excitation). Dual excitation wavelength experiments using solely DI-4-ANBDQBS yielded similar results. Monophasic action potential recordings showed prolonged APD and steeper APD restitution curves in the endocardium, indicating that 660-nm excitation provides a significant endocardial contribution to the signal. Three-dimensional computer simulations confirmed our findings.

Conclusion: Dual excitation wavelength epifluorescence allows detecting transmural heterogeneity in intact hearts. It therefore has the potential to become an important tool in experimental cardiac electrophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2010.08.019DOI Listing

Publication Analysis

Top Keywords

excitation wavelength
16
epifluorescence imaging
16
dual excitation
12
action potential
12
660-nm excitation
12
excitation
11
wavelength epifluorescence
8
imaging transmural
8
transmural electrophysiological
8
electrophysiological properties
8

Similar Publications

Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity.

Adv Mater

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution.

View Article and Find Full Text PDF

The AlO: Cr light-converting materials were successfully synthesized via co-precipitation, resulting in a grain size ranging from 100 to 400 nm. Under excitation wavelengths spanning from 360 to 650 nm, a distinct near-infrared (NIR) emission at 695 nm was observed. Through optimization, it has been established that a Cr doping concentration of 1.

View Article and Find Full Text PDF

Emission Tuning of Nonconventional Luminescent Materials via Cluster Engineering.

Small

January 2025

Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China.

Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!