Previous research on neuronal spacing and columnar organization indicates the presence of cell patterning alterations within the cerebral cortex of individuals with autism spectrum disorders (ASD). These patterning abnormalities include irregularities at the gray-white matter boundary and may implicate early neurodevelopmental events such as migration in altering cortical organization in ASD. The present study utilized a novel method to quantify the gray-white matter boundary in eight ASD and eight typically developing control subjects. Digital photomicrographs of the gray-white matter boundary were acquired from multiple positions within the superior temporal gyrus (BA21), dorsolateral frontal lobe (BA9), and dorsal parietal lobe (BA7) of each case. A sigmoid curve was fitted to the transition zone between layer VI and underlying white matter (subplate), and the slope of the resulting curve was used as a measure of the spatial extent of the transition zone. For all three cortical regions examined, ASD subjects showed "shallower" sigmoid curves compared to neurotypicals, indicating the presence of an indistinct boundary between cortical layer VI and the underlying white matter. These results may reflect the presence of supernumerary neurons beneath the cortical plate that could be the result of migration deficits or failed apoptosis in the subplate region. Furthermore, these findings raise questions regarding the validity of cortical measures that rely on gray-white matter parcellation, since an indistinct transition zone could lead to a misplaced cortical boundary and errors in both thickness and volume measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2010.08.091 | DOI Listing |
Alzheimers Dement
December 2024
Kyung Hee University Hospital at Gangdong, Seoul, Korea, Republic of (South).
Background: Alzheimer's disease (AD) presents typically gray matter atrophy and white matter abnormalities in neuroimaging, suggesting that the gray-white matter boundary could be altered in individuals with AD. The purpose of this study was to explore differences in gray-white matter boundary Z-score (gwBZ) and its tissue volume (gwBTV) between patients with AD, amnestic mild cognitive impairment (MCI), and cognitively normal (CN) elderly participants.
Method: Three-dimensional T1-weight images of a total of 227 participants were prospectively obtained to map gwBZ and gwBTV on images using a 3-T MR system.
NMR Biomed
February 2025
MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.
The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.
View Article and Find Full Text PDFNeurotrauma Rep
December 2024
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Magn Reson Med
December 2024
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA.
Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.
View Article and Find Full Text PDFGlia
December 2024
Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.
Focal cortical dysplasias (FCDs) are local malformations of the human neocortex and a leading cause of intractable epilepsy. FCDs are classified into different subtypes including FCD IIa and IIb, characterized by a blurred gray-white matter boundary or a transmantle sign indicating abnormal white matter myelination. Recently, we have shown that myelination is also compromised in the gray matter of FCD IIa of the temporal lobe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!