The α-subunit of tetrodotoxin-resistant voltage-gated sodium channel Na(V)1.8 is selectively expressed in sensory neurons. It has been reported that Na(V)1.8 is involved in the transmission of nociceptive information from sensory neurons to the central nervous system in nociceptive [1] and neuropathic [24] pain conditions. Thus Na(V)1.8 has been a promising target to treat chronic pain. Here we discuss the recent advances in the study of trafficking mechanism of Na(V)1.8. These pieces of information are particularly important as such trafficking machinery could be new targets for painkillers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977848 | PMC |
http://dx.doi.org/10.1016/j.neulet.2010.08.074 | DOI Listing |
J Neurophysiol
January 2025
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
Anatomical studies have revealed a prominent role for feedback projections in the primate visual cortex. Theoretical models suggest that these projections support important brain functions, like attention, prediction, and learning. However, these models make different predictions about the relationship between feedback connectivity and neuronal stimulus selectivity.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.
Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.
View Article and Find Full Text PDFJ Neurol
January 2025
Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.
Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.
Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.
J Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
Heliyon
January 2025
Wolfson Sensory, Pain and Regeneration Centre, King's College London, London, United Kingdom.
Neuropathic pain following peripheral nerve injury results from maladaptive changes in neurons and immune cells contribution to mechanisms underlying chronic pain. Specifically, in dorsal root ganglia (DRG), sensory neuron cell bodies release extracellular vesicles (EVs) which promote pro-inflammatory macrophage accumulation that facilitates nociceptive signalling. Here, we show that macrophages shuttle EVs to neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!