Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases.

J Mol Graph Model

Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.

Published: September 2010

Kunitz proteinase inhibitors are widely distributed in legume seeds, and some of them have the ability to inhibit two different classes of enzymes. In this report, novel insights into three-dimensional structure and action mechanism of ApKTI, an Adenanthera pavonina Kunitz trypsin inhibitor, were provided to shed some light on an unconventional non-competitive activity against trypsin and papain. Firstly, ApKTI was purified by two tandem-size molecular exclusion chromatography high resolutions, Sephacryl S-100 and Superose 12 10/300 GL. Purified ApTKI showed molecular mass of 22 kDa and higher affinity against trypsin in comparison to papain, while the bifunctional inhibitor presented lower inhibitory activity. Moreover, in vitro assays showed that ApKTI has two independent interaction sites, permitting simultaneous inhibition to both enzymes. Theoretical three-dimensional structures of ApTKI complexed to both target proteinases were constructed in order to determine interaction mode by using Modeller v9.6. Since the structure of no non-competitive Kunitz inhibitor has been elucidated, ApTKI-trypsin and ApTKI-papain docking were carried out using Hex v5.1. In silico experiments showed that the opposite inhibitor loop interacts with adjacent sites of trypsin (Arg(64), Ser(107), Arg(88) and Lys(108)) and papain (Gln(51), Asp(172) and Arg(173)), probably forming a ternary complex. Unusual residue substitutions at the proposed interface can explain the relative rarity of twin trypsin/papain inhibition. The predicted non-coincidence of trypsin and papain binding sites is completely different from that of previously proposed inhibitors, adding more information about mechanisms of non-competitive plant proteinase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2010.05.006DOI Listing

Publication Analysis

Top Keywords

non-competitive kunitz
8
kunitz trypsin
8
trypsin inhibitor
8
adenanthera pavonina
8
proteinase inhibitors
8
trypsin papain
8
trypsin
6
inhibitor
5
structural mechanistic
4
mechanistic insights
4

Similar Publications

The Indianmeal moth, , is one of the most damaging pests of stored products. We investigated the insecticidal properties of ApKTI, a Kunitz trypsin inhibitor from seeds, against larvae through bioassays with artificial diet. ApKTI-fed larvae showed reduction of up to 88% on larval weight and 75% in survival.

View Article and Find Full Text PDF

Rhynchosia sublobata, a wild relative of pigeonpea, possesses defensive proteinase/protease inhibitors (PIs). Characterization of trypsin specific PIs (RsPI) separated from seeds by column chromatography using 2-D gel electrophoresis and Edman degradation method identified R. sublobata possessed both Bowman-Birk isoinhibitors (RsBBI) and Kunitz isoinhibitors (RsKI).

View Article and Find Full Text PDF

In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus.

PLoS Negl Trop Dis

January 2016

Vector Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America.

Background: Hematophagous mosquitos and ticks avoid host hemostatic system through expression of enzyme inhibitors targeting proteolytic reactions of the coagulation and complement cascades. While most inhibitors characterized to date were found in the salivary glands, relatively few others have been identified in the midgut. Among those, Boophilin is a 2-Kunitz multifunctional inhibitor targeting thrombin, elastase, and kallikrein.

View Article and Find Full Text PDF

Characterization and pharmacological properties of a novel multifunctional Kunitz inhibitor from Erythrina velutina seeds.

PLoS One

February 2014

Laboratório de Química e Função de Proteínas Bioativas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.

Inhibitors of peptidases isolated from leguminous seeds have been studied for their pharmacological properties. The present study focused on purification, biochemical characterization and anti-inflammatory and anticoagulant evaluation of a novel Kunitz trypsin inhibitor from Erythrina velutina seeds (EvTI). Trypsin inhibitors were purified by ammonium sulfate (30-60%), fractionation followed by Trypsin-Sepharose affinity chromatography and reversed-phase high performance liquid chromatography.

View Article and Find Full Text PDF

Talisin is a seed-storage protein from Talisia esculenta that presents lectin-like activities, as well as proteinase-inhibitor properties. The present study aims to provide new in vitro and in silico biochemical information about this protein, shedding some light on its mechanistic inhibitory strategies. A theoretical three-dimensional structure of Talisin bound to trypsin was constructed in order to determine the relative interaction mode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!