Antioxidant and drug detoxification potential of aqueous extract of Annona senegalensis leaves in carbon tetrachloride-induced hepatocellular damage.

Pharm Biol

Phytomedicine, Toxicology, Reproductive and Developmental Biochemistry Research Laboratory, Department of Biochemistry, University of Ilorin, Nigeria.

Published: December 2010

Context:  Despite the myriad uses of Annona senegalensis Pers. (Annonaceae) leaves in folklore medicine of Nigeria, the basis is yet to be substantiated by scientific investigations.

Objectives:  To investigate the antioxidant (in vitro and in vivo) and drug detoxification potential of aqueous extract of A. senegalensis leaves in CCl₄-induced hepatocellular damage.

Materials And Methods:  In vitro antioxidant activity of the aqueous extract of A. senegalensis leaves was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), H₂O₂, superoxide ion, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and ferric ion models while in vivo antioxidant and drug detoxification activities of the extract at 100, 200, and 400 mg/kg body weight were done by assaying the levels of enzymic and non-enzymic indices in CCl₄-induced hepatocellular damage.

Results:  The extract at 1 mg/mL scavenged DPPH, H₂O₂, superoxide ion, and ABTS radicals, whereas ferric ion was significantly (P <0.05) reduced. The levels of alkaline and acid phosphatases, alanine and aspartate aminotransferases, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, reduced glutathione, vitamins C and E, glutathione S-transferase, nicotinamide adenine dinucleotide (reduced):Quinone oxidoreductase, uridyl diphosphoglucuronyl transferase, malondialdehyde, and lipid hydroperoxide that decreased in CCl₄ treated animals were significantly attenuated by the extract in a manner similar to the animals treated with the reference drug.

Discussion And Conclusion:  The ability of the aqueous extract of A. senegalensis leaves to scavenge free radicals in vitro and reversal of CCl₄-induced hepatocellular damage in rats suggest antioxidant and drug detoxification activities. Overall, this study has justified the rationale behind some of the medicinal uses of the plant in folklore medicine of Nigeria.

Download full-text PDF

Source
http://dx.doi.org/10.3109/13880209.2010.483247DOI Listing

Publication Analysis

Top Keywords

drug detoxification
12
aqueous extract
12
senegalensis leaves
12
antioxidant drug
8
detoxification potential
8
potential aqueous
8
annona senegalensis
8
extract senegalensis
8
ccl₄-induced hepatocellular
8
dpph h₂o₂
8

Similar Publications

Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.

View Article and Find Full Text PDF

PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.

View Article and Find Full Text PDF

Mercury toxicity resulting from enzyme alterations- minireview.

Biometals

January 2025

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.

Mercury is widely known for its detrimental effects on living organisms, whether in its elemental or bonded states. Recent comparative studies have shed light on the biochemical implications of mercury ingestion, both in low, persistent concentrations and in elevated acute dosages. Studies have presented models that elucidate how mercury disrupts healthy cells.

View Article and Find Full Text PDF

In recent decades, the common and the tropical bed bugs have experienced a resurgence in many parts of the world. The evolution of insecticide resistance in bed bug populations is considered a significant factor contributing to this resurgence. We analyzed samples of Cimex lectularius L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!