Studies on electrostatic interactions of colloidal particles in two dimensions: a modeling approach.

J Chem Phys

Department of Physics and Institute of Biophysics, National Central University, Jhongli 32001, Taiwan.

Published: August 2010

We study the effective electrostatic interactions between a pair of charged colloidal particles without salt ions while the system is confined in two dimensions. In particular, we use a simplified model to elucidate the effects of rotational fluctuations in counterion distribution. The results exhibit effective colloidal attractions under appropriate conditions. Meanwhile, long-range repulsions persist over most of our studied cases. The repulsive forces arise from the fact that in two dimensions, the charged colloids cannot be perfectly screened by counterions, as the residual quadrupole moments contribute to the repulsions at longer range. By applying multiple expansions, we find that the attractive forces observed at short range are mainly contributed by electrostatic interactions among higher-order electric moments. We argue that the scenario for attractive interactions discussed in this work is applicable to systems of charged nanoparticles or colloidal solutions with macroions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3474805DOI Listing

Publication Analysis

Top Keywords

electrostatic interactions
12
colloidal particles
8
studies electrostatic
4
interactions
4
colloidal
4
interactions colloidal
4
particles dimensions
4
dimensions modeling
4
modeling approach
4
approach study
4

Similar Publications

Construction, characterization and application of rutin loaded zein - Carboxymethyl starch sodium nanoparticles.

Int J Biol Macromol

January 2025

School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

In this paper, zein-carboxymethyl starch (CMS) nanoparticles were prepared by antisolvent precipitation method to improve the stability of rutin (RT). The encapsulation efficiency, loading capacity, oxidation resistance, structural properties were evaluated. The results showed that electrostatic, hydrogen bond and hydrophobic interaction were the main driving forces for the formation of nanoparticles.

View Article and Find Full Text PDF

Synergistic enhancement in ultra-trace thallium(I) removal using the titanium dioxide/biochar composite.

J Environ Manage

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.

View Article and Find Full Text PDF

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!