Modeling anhydrobiosis: activation of the mitogen-activated protein kinase ERK by dehydration in both human cells and nematodes.

J Exp Zool A Ecol Genet Physiol

College of Pharmacy and Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, China.

Published: December 2010

Anhydrobiosis ("life without water") is the state of suspended animation that certain organisms, including some nematodes, tardigrades, and bdelloid rotifers, enter during desiccation. Extreme water loss imposes considerable stress on biomolecules, cells, and tissues, and must require specific sensing and response mechanisms for survival. However, these mechanisms are poorly understood, in part owing to the lack of amenable model systems. We have, therefore, begun to develop mammalian cell lines as tools for investigating the eukaryotic response to desiccation, and have an additional long-term goal of generating a desiccation-tolerant mammalian cell. Here, we investigate the role of the mitogen-activated protein kinases (MAPKs) in controlling gene expression in response to evaporative water loss. We report that the ERK MAPK pathway inhibitor U0126 can almost completely block induction of desiccation early response genes in a human cell line, suggesting a role for the ERK signal transduction pathway in the stress response. Accordingly, ERK is activated by phosphorylation during desiccation of human cells. Importantly, nematodes also activate ERK on drying, showing that the mammalian cell model behaves similarly to invertebrates experiencing similar stress conditions. We further reveal that, in response to desiccation, human cells can rapidly initiate complex stress signaling networks involving all three MAPK pathways, with transient activation of ERK and sustained activation of JNK and p38. These results are consistent with a role for MAPK pathways in anhydrobiotic adaptation and suggest that non-anhydrobiotes are able to sense and, at least to some extent, respond appropriately to evaporative water loss.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.637DOI Listing

Publication Analysis

Top Keywords

human cells
12
water loss
12
mammalian cell
12
mitogen-activated protein
8
response desiccation
8
evaporative water
8
desiccation human
8
mapk pathways
8
erk
6
response
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!