Using a simple method to introduce genetic modifications into the chromosome of naturally nontransformable Bacillus, a set of marker-free inosine-producing and 5-aminoimidazole-4-carboxamide (AICA) ribonucleoside-producing Bacillus amyloliquefaciens strains has been constructed. These strains differ in expression levels of the genes responsible for nucleoside export. Overexpression of B. amyloliquefaciens pbuE and heterologous expression of Escherichia coli nepI, which encode nucleoside efflux transporters, each notably enhanced inosine production by a B. amyloliquefaciens nucleoside-producing strain. pbuE overexpression was found to increase AICA ribonucleoside accumulation, indicating that the substrate specificity of the PbuE pump extends to this nucleoside. These results demonstrate that identifying genes whose products facilitate transport of a desired nucleoside out of cells and enhancing their expression can improve the performance of strains used for industrial production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-010-0829-zDOI Listing

Publication Analysis

Top Keywords

genetic modifications
8
nucleoside export
8
nucleoside
6
enhancement extracellular
4
extracellular purine
4
purine nucleoside
4
nucleoside accumulation
4
accumulation bacillus
4
strains
4
bacillus strains
4

Similar Publications

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!