T cell receptor activation induces inositol 1,4,5 trisphosphate (IP(3))-mediated calcium signaling that is essential for cell metabolism and survival. Moreover, inhibitors of IP(3) or pharmacological agents that disrupt calcium homeostasis readily induce autophagy. Using a glucocorticoid-sensitive CD4/CD8 positive T cell line, we found that dexamethasone prevented both IP(3)-mediated and spontaneous calcium signals within a timeframe that correlated with the induction of autophagy. We determined that this loss in IP(3)-mediated calcium signaling was dependent upon the downregulation of the Src kinase Fyn at the mRNA and protein level. Because it has previously been shown that Fyn positively regulates IP(3)-mediated calcium release by phosphorylating Type I IP(3) receptors (IP(3)R1), we investigated the effect of glucocorticoids on IP(3)R1 phosphorylation at Tyr353. Accordingly, glucocorticoid-mediated downregulation of Fyn prevented IP(3)R1 phosphorylation at Tyr353. Moreover, selective knockdown of Fyn or treatment with a Src inhibitor also attenuated IP(3)-mediated calcium release and induced autophagy. Collectively, these data indicate that glucocorticoids promote autophagy by inhibiting IP(3)-dependent calcium signals. These findings carry important therapeutic implications given the widespread use of dexamethasone as both a chemotherapeutic and immunosuppressive agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039738 | PMC |
http://dx.doi.org/10.4161/auto.6.7.13290 | DOI Listing |
Cell Calcium
November 2024
Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca-activated Cl channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca and depolarization.
View Article and Find Full Text PDFLife Sci Alliance
August 2024
Centre for Brain Research, Indian Institute of Science, Bangalore, India
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation.
View Article and Find Full Text PDFJ Clin Invest
January 2024
Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA.
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity.
View Article and Find Full Text PDFSci Rep
October 2023
Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia.
Ageing is associated with deteriorating urinary bladder function and an increasing prevalence of disorders such as underactive bladder. There are suggestions that G protein-coupled receptor (GPCR) second messenger pathways are altered during ageing, rather than the receptor proteins themselves. The aim of this study was to identify age-related variations in GPCR activation systems in urinary bladder smooth muscle (detrusor).
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2023
Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan. Electronic address:
Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectrum disorder (ASD) neuropathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!