Mechanical stimuli drive many physiological processes, including touch and pain sensation, hearing, and blood pressure regulation. Mechanically activated (MA) cation channel activities have been recorded in many cells, but the responsible molecules have not been identified. We characterized a rapidly adapting MA current in a mouse neuroblastoma cell line. Expression profiling and RNA interference knockdown of candidate genes identified Piezo1 (Fam38A) to be required for MA currents in these cells. Piezo1 and related Piezo2 (Fam38B) are vertebrate multipass transmembrane proteins with homologs in invertebrates, plants, and protozoa. Overexpression of mouse Piezo1 or Piezo2 induced two kinetically distinct MA currents. Piezos are expressed in several tissues, and knockdown of Piezo2 in dorsal root ganglia neurons specifically reduced rapidly adapting MA currents. We propose that Piezos are components of MA cation channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062430 | PMC |
http://dx.doi.org/10.1126/science.1193270 | DOI Listing |
Hypertension
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, China. (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.).
Background: Mechanosensitive Piezo1 channel plays a key role in pulmonary hypertension (PH). However, the role of Piezo2 in PH remains unclear.
Methods: Endothelial cell (EC)-specific knockout (, Tek-Cre; ) rats and primarily cultured pulmonary microvascular ECs were used to determine the role of Piezo2 in PH.
Neuron
December 2024
State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:
PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure.
View Article and Find Full Text PDFScience
November 2024
Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Stem cells perceive and respond to biochemical and physical signals to maintain homeostasis. Yet, it remains unclear how stem cells sense mechanical signals from their niche in vivo. In this work, we investigated the roles of PIEZO mechanosensitive channels in the intestinal stem cell (ISC) niche.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Brain Sciences, DGIST, Daegu, Republic of Korea.
Sensations of the internal state of the body play crucial roles in regulating the physiological processes and maintaining homeostasis of an organism. However, our understanding of how internal signals are sensed, processed, and integrated to generate appropriate biological responses remains limited. Here, we show that the C.
View Article and Find Full Text PDFClin Sci (Lond)
December 2024
Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, U.S.A.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!