A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. | LitMetric

Chloroplasts originated from a cyanobacterium, which was engulfed by a primitive eukaryotic host cell. During evolution, chloroplasts have largely lost their autonomy due to the loss of many genes from their own genomes. Consequently, expression of genes encoded in the chloroplast genome is mainly controlled by the factors transferred from the cytosol to chloroplasts. However, chloroplast genomes of glaucophytes and red algae have retained some transcription factors (hypothetical chloroplast open reading frame 27 to 30 [Ycf27-Ycf30]) that are absent from green algae and land plants. Here, we show that the red algal chloroplast up-regulates transcription of the Rubisco operon rbcLS-cbbX via Ycf30 independently of nuclear control. Light-induced transcriptional activation of the Rubisco operon was observed in chloroplasts isolated from the red alga Cyanidioschyzon merolae. The activation was suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results suggest that chloroplast autonomously regulates transcription of the Rubisco operon in response to the activation of photosynthesis driven by the light. Transcriptional activation of the Rubisco operon was specifically repressed by the addition of anti-Ycf30 antibodies. Furthermore, reduced NADP, ribulose-1,5-bisphosphate, and 3-phosphoglyceric acid triggered the up-regulation of Rubisco transcription in the dark, and the activation was dependent on Ycf30. Thus, red algal chloroplasts have retained a nucleus-independent transcriptional regulation of the Rubisco operon to respond to environmental changes. The autonomous system would have been necessary for the initial fixation of cyanobacterial photosynthesis in the ancient nonphotosynthetic eukaryotic host. It has remained functional in the red algal chloroplast over evolutionary time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2971626PMC
http://dx.doi.org/10.1104/pp.110.163188DOI Listing

Publication Analysis

Top Keywords

rubisco operon
24
red algal
12
ycf30 red
8
red alga
8
alga cyanidioschyzon
8
cyanidioschyzon merolae
8
eukaryotic host
8
algal chloroplast
8
transcription rubisco
8
transcriptional activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!