Background: Several studies already stressed the importance of haemodialysis (HD) time in the removal of uraemic toxins. In those studies, however, also the amount of dialysate and/or processed blood was altered. The present study aimed to investigate the isolated effect of the factor time t (by processing the same total blood and dialysate volume in two different time schedules) on the removal and kinetic behaviour of some small, middle and protein-bound molecules.

Methods: The present study had a crossover design: 11 stable anuric HD patients underwent two bicarbonate HD sessions (~ 4 and ~ 8 h) in a random sequence, at least 1 week apart. The GENIUS single-pass batch dialysis system and the high-flux FX80 dialysers (Fresenius Medical Care, Bad Homburg, Germany) were used. The volume of blood and dialysate processed, volume of ultrafiltration, and dialysate composition were prescribed to be the same. For each patient, blood was sampled from the arterial line at 0, 60, 120, 180 and 240 min (all sessions), and at 360 and 480 min (8-h sessions). Dialysate was sampled at the end of HD from the dialysate tank. The following solutes were investigated: (i) small molecules: urea, creatinine, phosphorus and uric acid; (ii) middle molecule: β(2)M; and (iii) protein-bound molecules: homocysteine, hippuric acid, indole-3-acetic acid and indoxyl sulphate. Total solute removals (solute concentration in the spent dialysate of each analyte × 90 L - the volume of dialysate) (TSR), clearances (TSR of a solute/area under the plasma water concentration time curve of the solute) (K), total cleared volumes (K × dialysis time) (TCV), and dialyser extraction ratios (K/blood flow rate) (ER) were determined. The percent differences of TSR, K, TCV and ER between 4- and 8-h dialyses were calculated. Single-pool Kt/Vurea, and post-dialysis percent rebounds of urea, creatinine and β(2)M were computed.

Results: TSR, TCV and ER were statistically significantly larger during prolonged HD for all small and middle molecules (at least, P < 0.01). Specifically, the percent increases of TSR (8 h vs 4 h) were: for urea 22.6.0% (P < 0.003), for creatinine 24.8% (P < 0.002), for phosphorus 26.6% (P < 0.001), and for β(2)M 39.2% (P < 0.005). No statistically significant difference was observed for protein-bound solutes in any of the parameters being studied. Single-pool Kt/Vurea was 1.41 ± 0.19 for the 4-h dialysis sessions and 1.80 ± 0.29 for the 8-h ones. The difference was statistically significant (P < 0.0001). Post-dialysis percent rebounds of urea, creatinine and β(2)M were statistically significantly greater in the 4-h dialysis sessions (at least, P < 0.0002).

Conclusions: The present controlled study using a crossover design indicates that small and middle molecules are removed more adequately from the deeper compartments when performing a prolonged HD, even if blood and dialysate volumes are kept constant. Hence, factor time t is very important for these retention solutes. The kinetic behaviour of protein-bound solutes is completely different from that of small and middle molecules, mainly because of the strength of their protein binding.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfq543DOI Listing

Publication Analysis

Top Keywords

small middle
16
blood dialysate
12
urea creatinine
12
middle molecules
12
dialysate
9
removal uraemic
8
retention solutes
8
bicarbonate haemodialysis
8
factor time
8
kinetic behaviour
8

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Background: Calcitriol, beyond its well-established role in calcium and phosphate homeostasis, contributes to immunological processes. No known vitamin D dosage regimen effectively corrects the deficiency while accounting for immunoregulatory effects. Therefore, the purpose of this assessment was to determine whether regular administration of low doses of vitamin D might correct deficiency and have immunoregulatory effects.

View Article and Find Full Text PDF

Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!