Amoxicillin is a widely used antibiotic and has been detected in natural waters. Its environmental fate is in part determined by hydrolysis, and, direct and indirect photolysis. The hydrolysis rate in distilled water and water to which five different isolated of dissolved organic matter (DOM) was added, were evaluated. In the five different DOM solutions hydrolysis accounted for 5-18% loss of amoxicillin. Direct and indirect photolysis rates were determined using a solar simulator and it appeared that indirect photolysis was the dominant loss mechanism. Direct photolysis, in a solar simulator, accounted for 6-21% loss of amoxicillin in the simulated natural waters. The steady-state concentrations of singlet oxygen, (1)ΔO(2) (∼10(-13) M) and hydroxyl radical, •OH (∼10(-17) M) were obtained in aqueous solutions of five different dissolved organic matter samples using a solar simulator. The bimolecular reaction rate constant of (1)ΔO(2) with amoxicillin was measured in the different solutions, k(ΔO(2)) = 1.44 × 10(4) M(-1) s(-1). The sunlight mediated amoxicillin loss rate with (1)ΔO(2) (∼10(-9) s(-1)), and with •OH (∼10(-7) s(-1)), were also determined for the different samples of DOM. While (1)ΔO(2) only accounted for 0.03-0.08% of the total loss rate, the hydroxyl radical contributed 10-22%. It appears that the direct reaction of singlet and triplet excited state DOM ((3)DOM(∗)) with amoxicillin accounts for 48-74% of the loss of amoxicillin. Furthermore, the pseudo first-order photodegradation rate showed a positive correlation with the sorption of amoxicillin to DOM, which further supported the assumption that excited state DOM∗ plays a key role in the photochemical transformation of amoxicillin in natural waters. This is the first study to report the relative contribution of all five processes to the fate of amoxicillin in aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2010.08.024 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Circularly Polarized Light (CPL)-dependent anomalous photovoltaic effect (APVE), characterized by light helicity-manipulated steady photocurrent and above-bandgap photovoltage, has demonstrated significant potential in the fields of photoelectronic and photovoltaics. However, exploiting CPL-dependent APVE in chiral hybrid perovskites, a promising family with intrinsic chiroptical activity and non-centrosymmetric structure, remains challenging. Here, leveraging the flexible structural design of chiral alternating cations intercalation-type perovskites, CPL-dependent APV, for the first time, is achieved in chiral perovskites.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFNanoscale
January 2025
Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.
Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!