The use of molecular modeling in conjunction with site-directed mutagenesis has been extensively used to study substrate orientation within cytochrome P450 active sites and to identify potential residues involved in the positioning and catalytic mechanisms of these substrates. However, because docking studies utilize static models to simulate dynamic P450 enzymes, the effectiveness of these studies is strongly dependent on accurate enzyme models. This study employed a cytochrome P450 3A4 (CYP3A4) crystal structure (Protein Data Bank entry 1W0E) to predict the sites of metabolism of the known CYP3A4 substrate raloxifene. In addition, partial charges were incorporated into the P450 heme moiety to investigate the effect of the modified CYP3A4 model on metabolite prediction with the ligand docking program Autodock. Dehydrogenation of raloxifene to an electrophilic diquinone methide intermediate has been linked to the potent inactivation of CYP3A4. Active site residues involved in the positioning and/or catalysis of raloxifene supporting dehydrogenation were identified with the two models, and site-directed mutagenesis studies were conducted to validate the models. The addition of partial charges to the heme moiety improved the accuracy of the docking studies, increasing the number of conformations predicting dehydrogenation and facilitating the identification of substrate-active site residue interactions. On the basis of the improved model, the Phe215 residue was hypothesized to play an important role in orienting raloxifene for dehydrogenation through a combination of electrostatic and steric interactions. Substitution of this residue with glycine or glutamine significantly decreased dehydrogenation rates without concurrent changes in the rates of raloxifene oxygenation. Thus, the improved structural model predicted novel enzyme-substrate interactions that control the selective dehydrogenation of raloxifene to its protein-binding intermediate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958526 | PMC |
http://dx.doi.org/10.1021/bi101139q | DOI Listing |
Sci Rep
December 2024
Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.
View Article and Find Full Text PDFIndian J Med Res
November 2024
Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India.
Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options.
View Article and Find Full Text PDFBMC Genomics
December 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.
Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.
Biotechnol Adv
December 2024
Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China. Electronic address:
Current studies found that the peritumoral tissue of hepatocellular carcinoma (HCC) may be different from normal liver tissue based on proteomics, and related to progression, recurrence and metastasis of HCC. Our previous study proposed "peritumor microenvironment (PME)" to summarize the influence of peritumor tissue on occurrence and progression of HCC. Peritumor CYP2E1 activity was significantly elevated in HCC, and related to occurrence and progression of HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!