1,3-Disubstituted ureas possessing a piperidyl moiety have been synthesized to investigate their structure-activity relationships as inhibitors of the human and murine soluble epoxide hydrolase (sEH). Oral administration of 13 1-aryl-3-(1-acylpiperidin-4-yl)urea inhibitors in mice revealed substantial improvements in pharmacokinetic parameters over previously reported 1-adamantylurea based inhibitors. For example, 1-(1-(cyclopropanecarbonyl)piperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (52) showed a 7-fold increase in potency, a 65-fold increase in C(max), and a 3300-fold increase in AUC over its adamantane analogue 1-(1-adamantyl)-3-(1-propionylpiperidin-4-yl)urea (2). This novel sEH inhibitor showed a 1000-fold increase in potency when compared to morphine by reducing hyperalgesia as measured by mechanical withdrawal threshold using the in vivo carrageenan induced inflammatory pain model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285450PMC
http://dx.doi.org/10.1021/jm100691cDOI Listing

Publication Analysis

Top Keywords

1-aryl-3-1-acylpiperidin-4-ylurea inhibitors
8
inhibitors human
8
human murine
8
murine soluble
8
soluble epoxide
8
epoxide hydrolase
8
structure-activity relationships
8
inflammatory pain
8
increase potency
8
hydrolase structure-activity
4

Similar Publications

Objective: Tuberous sclerosis complex (TSC) is a monogenetic disorder associated with sustained mechanistic target of rapamycin (mTOR) activation, leading to heterogeneous clinical manifestations. Epilepsy and renal angiomyolipoma are the most important causes of morbidity in adult people with TSC (pwTSC). mTOR is a key player in inflammation, which in turn could influence TSC-related clinical manifestations.

View Article and Find Full Text PDF

The main protease M is a clinically validated target to treat infections by the coronavirus SARS-CoV-2. Among the first reported M inhibitors was the peptidomimetic α-ketoamide , whose cocrystal structure with M paved the way for multiple lead-finding studies. We established structure-activity relationships for the series by modifying residues at the P1', P3, and P4 sites.

View Article and Find Full Text PDF

Design and Synthesis of Hederagenin Derivatives for the Treatment of Sepsis by Targeting TAK1 and Regulating the TAK1-NF-κB/MAPK Signaling.

J Med Chem

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.

Sepsis is a systemic inflammatory response caused by infection and is a leading cause of death worldwide. We designed and synthesized a series of hederagenin analogues with anti-inflammatory activity. The most effective compound, , reduced the release of TNF-α and IL-6 in RAW264.

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!