Numerous genetic studies have shown that the CREB-binding protein (CBP) is an essential component of long-term memory formation, through its histone acetyltransferase (HAT) function. E1A-binding protein p300 and p300/CBP-associated factor (PCAF) have also recently been involved in memory formation. By contrast, only a few studies have reported on acetylation modifications during memory formation, and it remains unclear as to how the system is regulated during this dynamic phase. We investigated acetylation-dependent events and the expression profiles of these HATs during a hippocampus-dependent task taxing spatial reference memory in the Morris water maze. We found a specific increase in H2B and H4 acetylation in the rat dorsal hippocampus, while spatial memory was being consolidated. This increase correlated with the degree of specific acetylated histones enrichment on some memory/plasticity-related gene promoters. Overall, a global increase in HAT activity was measured during this memory consolidation phase, together with a global increase of CBP, p300, and PCAF expression. Interestingly, these regulations were altered in a model of hippocampal denervation disrupting spatial memory consolidation, making it impossible for the hippocampus to recruit the CBP pathway (CBP regulation and acetylated-H2B-dependent transcription). CBP has long been thought to be present in limited concentrations in the cells. These results show, for the first time, that CBP, p300, and PCAF are dynamically modulated during the establishment of a spatial memory and are likely to contribute to the induction of a specific epigenetic tagging of the genome for hippocampus-dependent (spatial) memory consolidation. These findings suggest the use of HAT-activating molecules in new therapeutic strategies of pathological aging, Alzheimer's disease, and other neurodegenerative disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055563 | PMC |
http://dx.doi.org/10.1038/npp.2010.117 | DOI Listing |
Sci Rep
January 2025
Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
Autism spectrum disorder (ASD) comprises alterations in brain anatomy and physiology that ultimately affect information processing and behavior. In most cases, autism is considered idiopathic, involving alterations in numerous genes whose functions are not extensively documented. We evaluated the C58/J mouse strain as an idiopathic model of ASD, emphasizing synaptic transmission as the basis of information processing.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Molecular Anatomy, School of Medicine University of the Ryukyus, Uehara, 207, Nishihara, Okinawa 903-0213, Japan.
The subiculum is a main output part of the hippocampal formation and important for learning and memory. According to connection studies, the distal and proximal regions of the subiculum project to the brain regions related to the spatial and emotional memories, respectively. Our previous morphological studies indicated that the ventral subiculum (vSub) consists of two regions, the distal subiculum (Sub1) and the proximal subiculum (Sub2), while the dorsal subiculum (dSub) seemed to comprise only one region (Sub1).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:
Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:
Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
Ferroelectric semiconductors have the advantages of switchable polarization ferroelectric field regulation and semiconductor transport characteristics, which are highly promising in ferroelectric transistors and nonvolatile memory. However, it is difficult to prepare a Sn-based perovskite film with both robust ferroelectric and semiconductor properties. Here, by doping with 2-methylbenzimidazole, Sn-based perovskite [93.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!