The initial processes involved in radiation carcinogenesis have not been clearly elucidated. We isolated mouse mutant cells exhibiting plasticity in their mutation phenotypes. These mutant cells were originally isolated from an irradiated cell population as 6-thioguanine resistant (6TGR) mutants that were deficient in hypoxanthine phosphoribosyl transferase (Hprt, E.C.2.4.2.8) activity at the frequency of approximately 6.2 x 10(-5). Approximately 10% of 6TGR cells showed plasticity in their mutant phenotypes and reverted to HAT-resistant (HATR), which is Hprt-proficient, wild type phenotype. Eventually we identified the plastic mutants in the un-irradiated wild type cell population as well and found that ionizing irradiation enhanced the frequency of the plastic mutation approximately 24 times. Treatment with 5-aza-cytidine did not affect the plasticity of mutant phenotypes identified in this study, suggesting that DNA methylation was not involved in the plastic changes of the mutant phenotypes. The plastic mutant phenotype identified in our study is a new type of genomic instability induced by ionizing irradiation, and it is likely to be involved in one of the primary changes that occur in the process of radiation carcinogenesis, and may explain one element of carcinogenesis, which is composed of multi-stages.
Download full-text PDF |
Source |
---|
Bone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFLife Sci Alliance
April 2025
National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA
Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Promoters are crucial elements for controlling gene expression in cells, yet lactic acid bacteria (LAB) often lack a diverse set of available constitutive promoters with quantitative characterization. To enrich the LAB promoter library, this study focused on the known strong constitutive promoter P in LAB. Through error-prone PCR and dNTP analog-induced random mutagenesis, a library of 247 mutants of P was generated by using the red fluorescent protein (RFP) fluorescence intensity as a high-throughput screening indicator in Streptococcus thermophilus.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Cleveland Clinic, Cleveland, OH, United States.
Epidermal growth factor receptor (EGFR) is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors is limited to cancers that harbor sensitizing mutations in the EGFR gene due to dose limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wildtype or mutant EGFR. We found that YES1 is highly expressed in triple negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.
Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!