Using a stainless steel mesh as a template collector, electrospun nanofiber meshes with well-tailored architectures and patterns were successfully prepared from biodegradable poly (epsilon-caprolactone) (PCL). It was found that the resulting PCL nanofiber (NF) meshes had similar topological structures to that of the template stainless steel mesh. Such PCL nanofiber meshes (NF meshes) had improved the tensile strength with Young's modulus of 62.7 +/- 5.3 MPa, which is >40% higher than the modulus of 44 +/- 5.7 MPa as measured with the corresponding randomly oriented PCL nanofiber mats (RNF mat). On the other hand, the ultimate strain (87.30%) of the PCL NF meshes was distinctly lower than that of the PCL RNF mats (146.46%). To the best of our knowledge, this is the first time that the mechanical properties of nanofiber meshes with tailored architectures and patterns were studied and reported. When cultured with a mouse osteoblastic cell line (MC3T3-E1), the electrospun PCL NF meshes gave a much higher proliferation rate as compared with the randomly oriented PCL RNF mats. More importantly, it was found that the cells grew and elongated along the fiber orientation directions, and the resulted cellular organization and distribution mimicked the topological structures of the PCL NF meshes. These results indicated that the electrospun nanofiber scaffolds with tailored architectures and patterns hold potential for engineering functional tissues or organs, where an ordered cellular organization is essential.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5082/1/1/015001DOI Listing

Publication Analysis

Top Keywords

nanofiber meshes
20
architectures patterns
16
electrospun nanofiber
12
tailored architectures
12
pcl nanofiber
12
pcl meshes
12
meshes
9
pcl
9
meshes tailored
8
stainless steel
8

Similar Publications

Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.

View Article and Find Full Text PDF

Abdominal PP meshes coated with functional core-sheath biodegradable nanofibers with anticoagulant and antibacterial properties.

Biomater Adv

January 2025

Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France. Electronic address:

Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls.

View Article and Find Full Text PDF

Comparative Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models.

Biomacromolecules

November 2024

Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,Finland.

Article Synopsis
  • There's a growing interest in using cellulose-based materials for biomedical purposes, but there's a lack of detailed studies on these materials from different sources and processing methods.
  • This research tested the biocompatibility of various cellulose forms, including bacterial nanocellulose and regenerated cellulose, against synthetic options like polypropylene in a subcutaneous model.
  • While regenerated cellulose showed promise as a safe alternative, fragmentation issues in cellulose nanofibril meshes indicate a need for better processing techniques to enhance their effectiveness.
View Article and Find Full Text PDF

Milk exosome-infused fibrous matrix for treatment of acute wound.

J Control Release

December 2024

Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

To provide an advanced therapy for wound recovery, in this study, pasteurized bovine milk-derived exosomes (mEXO) are immobilized onto a polydopamine (PDA)-coated hyaluronic acid (HA)-based electrospun nanofibrous matrix (mEXO@PMAT) via a simple dip-coating method to formulate an mEXO-immobilized mesh as a wound-healing biomaterial. Purified mEXOs (∼82 nm) contain various anti-inflammatory, cell proliferation, and collagen synthesis-related microRNAs (miRNAs), including let-7b, miR-184, and miR-181a, which elicit elevated mRNA expression of keratin5, keratin14, and collagen1 in human keratinocytes (HaCaT) and fibroblasts (HDF). The mEXOs immobilized onto the PDA-coated meshes are gradually released from the meshes over 14 days without burst-out effect.

View Article and Find Full Text PDF

Acoustically semitransparent nanofibrous meshes appraised by high signal-to-noise-ratio MEMS microphones.

Commun Eng

September 2024

Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Str. 66, Braunschweig, Germany.

Microelectromechanical system-based microphones demand high ingress protection levels with regard to their use in harsh environment. Here, we develop environmental protective components comprising polyimide nanofibers combined onto polyether ether ketone fabric meshes and subsequently appraise their impact on the electroacoustic properties of high signal-to-noise-ratio microelectromechanical system-based microphones via industry-standard characterizations and theoretical simulations. Being placed directly on top of the microphone sound port, the nanofiber mesh die-cut parts with an inner diameter of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!