The interaction of CD4(+) T cells with MHC class II (MHCII)-expressing hematopoietic APCs plays a critical role in both the generation of protective immune responses and maintenance of tolerance in the lung. The functional significance of MHCII expression by nonhematopoietic stromal cells, however, has not been defined in vivo. Using a novel mouse model of orthotopic left lung transplantation, we demonstrate that selective elimination of MHCII expression on nonhematopoietic cells leads to an inflammatory response as a result of reduced peripheral generation of regulatory CD4(+) T cells. Absence of MHCII expression on nonhematopoietic cells also inhibits local growth of metastatic pulmonary tumor. These findings indicate that nonhematopoietic cells play a previously unrecognized role in downregulating inflammatory responses in nonlymphoid tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897247PMC
http://dx.doi.org/10.4049/jimmunol.1000971DOI Listing

Publication Analysis

Top Keywords

nonhematopoietic cells
16
mhcii expression
12
expression nonhematopoietic
12
mhc class
8
plays critical
8
critical role
8
inflammatory responses
8
cd4+ cells
8
cells
7
nonhematopoietic
5

Similar Publications

Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.

View Article and Find Full Text PDF

A Patient With NEMO Deficiency, Disseminated M. szulgai, and Post-HSCT Inflammatory Disease.

Pediatr Transplant

February 2025

Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.

Background: Disseminated mycobacterium poses a significant risk for patients with NEMO deficiency. Hematopoietic stem cell transplant (HSCT) corrects the NEMO defect in hematopoietic cells thus treating the immunodeficiency.

Methods: We present a patient with NEMO deficiency who successfully underwent HSCT despite a disseminated Mycobacterium szulgai infection.

View Article and Find Full Text PDF

Spatiotemporal dynamics of fetal liver hematopoietic niches.

J Exp Med

February 2025

Immunology Department, Unit of Lymphocytes and Immunity, Institut Pasteur, Paris, France.

Embryonic hematopoietic cells develop in the fetal liver (FL), surrounded by diverse non-hematopoietic stromal cells. However, the spatial organization and cytokine production patterns of the stroma during FL development remain poorly understood. Here, we characterized and mapped the hematopoietic and stromal cell populations at early (E12.

View Article and Find Full Text PDF

Mesenchymal Stromal Cell (MSC) Isolation and Induction of Acute and Replicative Senescence.

Methods Mol Biol

December 2024

Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.

Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.

View Article and Find Full Text PDF

Stromal cells are non-hematopoietic cells that consist of endothelial cells and various mesenchymal cell populations. The composition of the stromal cell compartment is diverse in different organs. Numerous recent studies demonstrated that the lung environment contains heterogeneous mesenchymal stromal cell populations with distinctive genomic signatures and location preferences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!