During pulmonary infections, a careful balance between activation of protective host defense mechanisms and potentially injurious inflammatory processes must be maintained. Surfactant protein A (SP-A) is an immune modulator that increases pathogen uptake and clearance by phagocytes while minimizing lung inflammation by limiting dendritic cell (DC) and T cell activation. Recent publications have shown that SP-A binds to and is bacteriostatic for Mycoplasma pneumoniae in vitro. In vivo, SP-A aids in maintenance of airway homeostasis during M. pneumoniae pulmonary infection by preventing an overzealous proinflammatory response mediated by TNF-α. Although SP-A was shown to inhibit maturation of DCs in vitro, the consequence of DC/SP-A interactions in vivo has not been elucidated. In this article, we show that the absence of SP-A during M. pneumoniae infection leads to increased numbers of mature DCs in the lung and draining lymph nodes during the acute phase of infection and, consequently, increased numbers of activated T and B cells during the course of infection. The findings that glycyrrhizin, a specific inhibitor of extracellular high-mobility group box-1 (HMGB-1) abrogated this effect and that SP-A inhibits HMGB-1 release from immune cells suggest that SP-A inhibits M. pneumoniae-induced DC maturation by regulating HMGB-1 cytokine activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638720 | PMC |
http://dx.doi.org/10.4049/jimmunol.1000387 | DOI Listing |
Blood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.
View Article and Find Full Text PDFEur J Immunol
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Over the last 50 years, contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells present antigenic peptides to T cells promoting inflammation and the elevation of blood pressure.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Genentech, United States.
Testing for PD-L1 expression by immunohistochemistry (IHC) is used to predict immune checkpoint blockade (ICB) benefit but has performed inconsistently in urothelial cancer (UC) clinical trials. Different approaches are used for PD-L1 IHC. We analyzed paired PD-L1 IHC data on UC samples using the SP142 and 22C3 assays from the phase 3 IMvigor130 trial and found discordant findings summarized by four phenotypes: PD-L1 positive by both assays (PD-L1 double positive; PD-L1DP), PD-L1 positive by the SP142 assay only (SP142 single positive; SP142SP), PD-L1 positive by the 22C3 assay only (22C3 single positive; 22C3SP), and PD-L1 negative by both assays double negative (PD-L1 double negative; PD-L1DN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!