A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

B cell subsets contribute to renal injury and renal protection after ischemia/reperfusion. | LitMetric

Ischemia/reperfusion (I/R) triggers a robust inflammatory response within the kidney. Numerous components of the immune system contribute to the resultant renal injury, including the complement system. We sought to identify whether natural Abs bind to the postischemic kidney and contribute to complement activation after I/R. We depleted peritoneal B cells in mice by hypotonic shock. Depletion of the peritoneal B cells prevented the deposition of IgM within the glomeruli after renal I/R and attenuated renal injury after I/R. We found that glomerular IgM activates the classical pathway of complement, but it does not cause substantial deposition of C3 within the kidney. Furthermore, mice deficient in classical pathway proteins were not protected from injury, indicating that glomerular IgM does not cause injury through activation of the classical pathway. We also subjected mice deficient in all mature B cells (μMT mice) to renal I/R and found that they sustained worse renal injury than wild-type controls. Serum IL-10 levels were lower in the μMT mice. Taken together, these results indicate that natural Ab produced by peritoneal B cells binds within the glomerulus after renal I/R and contributes to functional renal injury. However, nonperitoneal B cells attenuate renal injury after I/R, possibly through the production of IL-10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133676PMC
http://dx.doi.org/10.4049/jimmunol.0903239DOI Listing

Publication Analysis

Top Keywords

renal injury
24
peritoneal cells
12
renal i/r
12
classical pathway
12
renal
10
injury
8
injury i/r
8
glomerular igm
8
mice deficient
8
μmt mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!