Objective: To identify inhibitors of the essential chromosome partitioning protein ParA that are active against Mycobacterium tuberculosis.

Methods: Antisense expression of the parA orthologue MSMEG_6939 was induced on the Mycobacterium smegmatis background. Screening of synthetic chemical libraries was performed to identify compounds with higher anti-mycobacterial activity in the presence of parA antisense. Differentially active compounds were validated for specific inhibition of purified ParA protein from M. tuberculosis (Rv3918c). ParA inhibitors were then characterized for their activity towards M. tuberculosis in vitro.

Results: Under a number of culture conditions, parA antisense expression in M. smegmatis resulted in reduced growth. This effect on growth provided a basis for the detection of compounds that increased susceptibility to expression of parA antisense. Two compounds identified from library screening, phenoxybenzamine and octoclothepin, also inhibited the in vitro ATPase activity of ParA from M. tuberculosis. Structural in silico analyses predict that phenoxybenzamine and octoclothepin undergo interactions compatible with the active site of ParA. Octoclothepin exhibited significant bacteriostatic activity towards M. tuberculosis.

Conclusions: Our data support the use of whole-cell differential antisense screens for the discovery of inhibitors of specific anti-tubercular drug targets. Using this approach, we have identified an inhibitor of purified ParA and whole cells of M. tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2980951PMC
http://dx.doi.org/10.1093/jac/dkq311DOI Listing

Publication Analysis

Top Keywords

para antisense
12
para
11
chromosome partitioning
8
partitioning protein
8
protein para
8
para tuberculosis
8
antisense expression
8
expression para
8
purified para
8
phenoxybenzamine octoclothepin
8

Similar Publications

Background: Bladder cancer (BC) is a malignant tumor that begins in the cells of the bladder, characterized by poor cell differentiation and strong invasion capacity, with a high incidence rate. Identifying key molecules that enhance BC cells' cisplatin sensitivity can help improve the clinical efficacy of BC treatment. Hence, this study aimed to determine the expression level of long non-coding RNA (lncRNA) ADAM Metallopeptidase with Thrombospondin Type 1 Motif 9 Antisense RNA 1 () in BC and explore its related mechanism underlying the amplification of cisplatin sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant epigenetic changes, specifically in DNA methylation and non-coding RNAs, play a significant role in the development of parathyroid tumors, particularly concerning the genes RASSF1A and APC, which are often downregulated in cancers.
  • In a study of parathyroid adenomas and carcinomas, RASSF1A promoter methylation was found in approximately 90% of adenomas and was inversely related to tumor size; however, APC methylation appeared less frequently.
  • The research concluded that the methylation of RASSF1A and APC is a common feature in parathyroid tumors, with the activity of DNA methyltransferases affecting
View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have been implicated in cancer progression and drug resistance development. Moreover, there is evidence that lncRNA HOX transcript antisense intergenic RNA (HOTAIR) is involved in colorectal cancer (CRC) progression. The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells, as well as the underlying mechanism.

View Article and Find Full Text PDF

This study aimed to investigate the expression of long non-coding ribonucleic acid (lncRNA) DDX11 antisense RNA 1 (DDX11-AS1) in breast cancer (BC) tissues and cells and investigate its biological function and potential molecular mechanism through in vitro experiments. Tissue specimens were obtained from 44 BC patients. TRIzol method was used to extract RNAs from the tissues.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) have emerged as important molecules and potential new targets for human cancers. This study investigates the function of lncRNA CTBP1 antisense RNA (CTBP1-AS) in prostate cancer (PCa) and explores the entailed molecular mechanism. Aberrantly expressed genes potentially correlated with PCa progression were probed using integrated bioinformatics analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!