A scanning frequency mode for ion cyclotron mobility spectrometry.

Anal Chem

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.

Published: October 2010

A new operational mode for an ion cyclotron mobility spectrometry instrument is explored as a possible means of performing high-resolution separations. The approach is based on oscillating fields that are applied to segmented regions of a circular drift tube. Ions with mobilities that are resonant with the frequency of field application are transmitted while nonresonant species are eliminated. An ion mobility spectrum is obtained by scanning the drift field application frequency. The approach is demonstrated by examining mixtures of ions produced by electrospraying the substance P peptide, as well as a mixture of tryptic peptides obtained by enzymatic digestion of cytochrome c. Drift field application frequency scans of substance P peptide ions show that it is possible to separate [M+2H](2+) ions, and compact and elongated forms of [M+3H](3+) ions. The resolution of different ions is related to the number of cycles for the analysis. At high cycle numbers (>50 3/4 or a drift length of 9242.03 cm) values of the resolving power can exceed 300 with a maximum resolving power of ∼400. The ability to tune the resolving power of a mobility-based separation by varying the ion cycle number has substantial analytical utility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac1017474DOI Listing

Publication Analysis

Top Keywords

field application
12
resolving power
12
mode ion
8
ion cyclotron
8
cyclotron mobility
8
mobility spectrometry
8
drift field
8
application frequency
8
substance peptide
8
ions
6

Similar Publications

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies.

Oncogene

January 2025

Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.

Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.

View Article and Find Full Text PDF

In order to solve the problem of logging calibration without a free pipe in the process of acoustic variable density logging and the subjective problem of the free pipe calibration method, this paper studies an attenuation rate calibration method based on acoustic variable density logging. Using the developed acoustic wave probe response relationship device and the acoustic wave probe calibration device, the response consistency of the receiving probe of the acoustic wave instrument and the frequency of the transmitting probe can be calibrated in the laboratory, and the response consistency and frequency calibration coefficient can be obtained. Through this coefficient, the acoustic wave attenuation rate can be derived.

View Article and Find Full Text PDF

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!