Aberrant expression of c-met and HGF/c-met pathway provides survival advantage in B-chronic lymphocytic leukemia.

Cytometry B Clin Cytom

Department of Hematology-Immunology, School of Medicine, Marmara University, Istanbul, Turkey.

Published: January 2011

Background: B-chronic lymphocytic leukemia (B-CLL) is characterized by accumulation of CD5(+) B lymphocytes. Decreased VLA-4 (Cd49d/CD29) and CD11a expression and defective adhesion in B-CLL have been previously shown, although there was no substantial data about its importance in immunobiology of B-CLL. The hepatocyte growth factor (HGF) receptor, c-met, plays a role in adhesion by acting on VLA-4. c-met and VLA-4 share crucial signaling molecules in cell survival. In this study, relationship between expressions of c-met and CD49d, CD11a, and additional common signaling molecules in B-CLL was investigated.

Methods: White blood cells from 24 patients with CLL were studied by flow cytometry and/or western blotting prior to and after culturing with recombinant HGF. HGF level from sera was measured with a bead-based flow cytometric assay.

Results: c-metα and c-metβ were expressed on B-CLL cells, while no expression was observed on normal donor CD19+ cells. This increase was inversely correlated with decreased expression of adhesion molecules. Serum level of HGF in B-CLL was found to be increased. In vitro experiments showed that HGF supported survival in B-CLL cells supporting the possible function of HGF/c-met pathway in B-CLL. Furthermore, expressions of critical signaling molecules shared by both VLA-4 and HGF/c-met systems including Bcl-XL, Akt, PI3K, and phospho-bad(136) following HGF stimulations of B-CLL cells have been found to be increased.

Conclusion: Increased expression of c-met and HGF may bypass the importance of expression of critical adhesion molecules and support survival of B-CLL cells. c-met, being one of the surface tyrosine kinases, may serve as a target for future therapies in B-CLL meriting more attention.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.b.20553DOI Listing

Publication Analysis

Top Keywords

b-cll cells
16
signaling molecules
12
b-cll
11
expression c-met
8
hgf/c-met pathway
8
b-chronic lymphocytic
8
lymphocytic leukemia
8
adhesion molecules
8
survival b-cll
8
hgf
7

Similar Publications

Chronic lymphocytic leukemia (CLL) can rarely transform into Waldenström macroglobulinemia (WM), posing diagnostic and therapeutic challenges. The diagnosis of WM requires bone marrow infiltration by lymphoplasmacytic cells and the presence of IgM gammopathy. Immunophenotypic markers include FMC7+, CD19+, CD20+, and CD138+.

View Article and Find Full Text PDF

Characterization of TFIIE-regulated genes by transcriptome analysis.

Turk J Biol

October 2024

Faculty of Science, Molecular Biology and Genetics, İhsan Doğramacı Bilkent University, Ankara, Turkiye.

Background/aim: Previous studies on general transcription factor II E (GTF2E) showed that it is associated with certain groups of diseases, such as colon cancer and trichothiodystrophy, but the global effect of GTF2E on cellular processes is still not widely characterized. This study aimed to investigate and characterize the effect of GTF2E on the transcription level of genes and identify the cellular processes and diseases associated with GTF2E.

Materials And Methods: The human colorectal carcinoma cell line HCT116 used in the study was transfected at a 30 nM concentration with siGTF2E1 or nontarget negative siRNA.

View Article and Find Full Text PDF
Article Synopsis
  • The BAG3 protein plays a key role in regulating cell survival and is being studied as a potential target for treating various cancers, particularly B-cell chronic lymphocytic leukemia (B-CLL).
  • Research shows that silencing BAG3 in stromal fibroblasts leads to increased apoptosis in B-CLL cells by disrupting critical survival signaling pathways.
  • The study highlights the link between BAG3 expression, cytokine networks, and tumor survival, suggesting that understanding these interactions could lead to new therapies for CLL.
View Article and Find Full Text PDF

presents a single nucleotide polymorphism at location 158 (V/F), which affects its binding to the fragment crystallizable (Fc) of antibodies (Abs). FcγRIIIa-158 V allotype has the highest affinity and is associated with a better clinical response to IgG1 monoclonal Abs (mAb) treatment. We compared the allele frequency of F158V polymorphism in cohorts of patients with B-cell lymphoproliferative disorders, including multiple myeloma (MM), monoclonal gammopathy of undetermined significance (MGUS), non-Hodgkin lymphoma (NHL), and B-cell chronic leukemia (B-CLL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!