Genomes are spatially highly organized within interphase nuclei. Spatial genome organization is increasingly linked to genome function. Fluorescence in situ hybridization (FISH) allows the visualization of specific regions of the genome for spatial mapping. While most gene localization studies have been performed on cultured cells, genome organization is likely to be different in the context of tissues. Three-dimensional (3D) culture model systems provide a powerful tool to study the contribution of tissue organization to gene expression and organization. However, FISH on 3D cultures is technically more challenging than on monocultures. Here, we describe an optimized protocol for interphase DNA FISH on 3D cultures of the breast epithelial cell line MCF-10A.B2, which forms breast acini and can be used as a model for early breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-789-1_25 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!