Characterization and global gene expression of F- phenocopies during Escherichia coli biofilm formation.

Mol Genet Genomics

Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, 060-8628, Japan.

Published: November 2010

The ecological role of horizontal gene transfer within biofilms has been recently investigated, and it has been reported that conjugation directly induces bacteria to form biofilms via expression of conjugative pili. In this report, we described the contribution of bacterial conjugation during biofilm formation by Escherichia coli harboring a natural IncF conjugative F plasmid (F(+)). We showed that cell-to-cell pili interactions through the homosexual mating-pair formation among F(+) × F(+) cells (namely, F(-) phenocopy phenomenon) promote E. coli biofilm formation at the early development stage. The presence of F(+) × F(+) population is the result from heterogeneity within biofilms leading to sessile bacteria that grow at different rates, in which the late-stationary phase cells acted as F(-) phenocopy cells. According to global transcriptional analysis, the biofilm lifestyle shared similar gene expression pattern with F(-) phenocopies. F(-) phenocopy cells expressed specific sets of chromosomal genes (e.g., genes for general stress response and two-component systems) that control the regulation regions of F transfer operon by blocking surface exclusion proteins and DNA transfer machineries. However, mating-pair proteins were stabilized and consequently promoted F(+) × F(+) pili assembly. Thus, F(-) phenocopy phenomenon is an effective adaptive behavior of bacterial cells during biofilm formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-010-0571-2DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
gene expression
8
escherichia coli
8
coli biofilm
8
phenocopy phenomenon
8
phenocopy cells
8
biofilm
5
formation
5
cells
5
characterization global
4

Similar Publications

A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in .

Front Chem

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.

Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH.

View Article and Find Full Text PDF

This case report presents a complex and challenging scenario of recurrent () bacteremia and tricuspid valve endocarditis in a 77-year-old male patient with multiple comorbidities and indwelling medical devices. The patient's medical history was significant for T4 paraplegia, neurogenic bladder requiring a chronic indwelling suprapubic catheter, heart block status post-permanent pacemaker placement, type 2 diabetes mellitus, chronic kidney disease, and chronic sacral wounds. The case highlights the difficulties in managing antibiotic-resistant infections, particularly in patients with implantable devices and chronic wounds.

View Article and Find Full Text PDF

Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects.

View Article and Find Full Text PDF

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations.

View Article and Find Full Text PDF

Cockroaches are widely recognized as vectors for transmitting pathogenic microorganisms in hospital and community environments due to their movement between contaminated and human-occupied spaces. (. ), particularly methicillin-resistant (MRSA), is a primary global health concern because of its capacity to cause a wide range of infections and its resistance to many antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!