The capability of "Candidatus Accumulibacter" to use nitrate as an electron acceptor for phosphorus uptake was investigated using two activated sludge communities. The two communities were enriched in Accumulibacter clade IA and clade IIA, respectively. By performing a series of batch experiments, we found that clade IA was able to couple nitrate reduction with phosphorus uptake, but clade IIA could not. These results agree with a previously proposed hypothesis that different populations of Accumulibacter have different nitrate reduction capabilities, and they will help to understand the ecological roles that these two clades provide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929836 | PMC |
http://dx.doi.org/10.1111/j.1758-2229.2009.00090.x | DOI Listing |
Environ Sci Technol
December 2024
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
" Accumulibacter" is a unique and pivotal genus of polyphosphate-accumulating organisms prevalent in wastewater treatment plants and plays mainstay roles in the global phosphorus cycle. However, the efforts to fully understand their genetic and metabolic characteristics are largely hindered by major limitations in existing sequence-based annotation methods. Here, we reported an integrated approach combining pangenome analysis, protein structure prediction and clustering, and meta-omic characterization, to uncover genetic and metabolic traits previously unexplored for .
View Article and Find Full Text PDFChemosphere
December 2024
Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil. Electronic address:
Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
Municipal wastewater treatment plants in China face significant challenges in effectively removing pollutants from low-strength wastewater with a low carbon-to-nitrogen (COD/N) ratio. This study proposes a novel approach incorporating porous polymers embedded with iron-carbon (PP-IC) into an activated sludge system to enhance treatment. The PP-IC accelerated the formation of densified activated sludge (DAS), characterized by small particle sizes (<200 μm), excellent settleability (sludge volume index: 61 mL/g), and improved pollutant removal efficiency, with total nitrogen and total phosphorus removal rates increasing by 14.
View Article and Find Full Text PDFWater Res
January 2025
College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
The effective production of NO-N through endogenous partial denitrification (EPD) provides a promising perspective for the broader adoption and application of anaerobic ammonia oxidation. However, the accumulation of polycyclic aromatic hydrocarbons (PAHs) in the environment may worsen the operational challenges of the EPD system. This study evaluated the resilience of the EPD system to the toxic impacts of phenanthrene (PHE) and anthracene (ANT) through macrogenomic analysis.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:
The removal of nutrients in sewage treatment plants can be significantly impacted by carbon limitations, especially for treating low carbon to nitrogen ratio (C/N) wastewater, which can markedly increase operational costs. Simultaneous nitrification, endogenous denitrification, and phosphorus removal combined with aerobic granular sludge (SNEDPR-AGS) has emerged as one of the optimal processes for treating low C/N wastewater owing to its high carbon utilization efficiency; however, the long-term effect of microplastics (MPs) on this system remains unclear. This study investigated the granular effect and microbial response of an SNEDPR-AGS system for treating low C/N wastewater under long-term exposure (180 d) to polyethylene terephthalate microplastics (PET-MPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!