Purpose: This study aimed to investigate the functional difference between hypoxia inducible factor (HIF)-1α and HIF-2α in oral squamous cell carcinomas (OSCC).

Experimental Design: We evaluated the correlations between HIF-1α and HIF-2α expression and the clinical-pathologic characteristics of 97 patients with OSCC by immunohistochemical staining. OSCC cell lines transfected with lentivirus encoding short hairpin RNA against HIF-1α/2α were used to investigate the HIF-1α/2α-dependent target genes. Xenograft tumors in nude mice were established using cells affected by lentivirus, and tumor growth, angiogenesis, proliferation, and apoptosis were measured.

Results: HIF-1α expression was significantly associated with T stage (P = 0.004), lymph node involvement (P = 0.006), histologic differentiation (P = 0.013), and microvessel density (P = 0.014), whereas that of HIF-2α was associated with T stage (P = 0.011) and microvessel density (P = 0.005). Patients with positive HIF-1α nuclear staining had a significantly worse overall survival (P < 0.001) and disease-free survival (P < 0.001) than those with negative HIF-1α staining. When OSCC cells were cultured at 5% O(2), only HIF-2α contributed to the expression of vascular endothelial growth factor. At 1% O(2), vascular endothelial growth factor was regulated by both HIF-1α and HIF-2α, but glucose transporter 1, carbonic anhydrase 9, and urokinase-type plasminogen activator receptor were regulated by HIF-1α rather than by HIF-2α. Knocking down HIF-1α or HIF-2α individually inhibited the xenograft tumor angiogenesis and growth, and knocking them down simultaneously revealed a better inhibitory effect than knocking down either unit alone.

Conclusions: HIF-1α and HIF-2α correlated with different clinical-pathologic parameters, stabilized at different oxygen levels, and regulated different genes in OSCC. However, both HIF-1α and HIF-2α showed promoting roles in tumor angiogenesis and growth, and therapeutic outcome may benefit from combined targeting of HIF-1α and HIF-2α.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-10-1408DOI Listing

Publication Analysis

Top Keywords

hif-1α hif-2α
32
hypoxia inducible
12
inducible factor
12
hif-1α
11
hif-2α
10
oral squamous
8
squamous cell
8
staining oscc
8
associated stage
8
microvessel density
8

Similar Publications

During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!