Vascular dermatan sulfate and heparin cofactor II.

Prog Mol Biol Transl Sci

Washington University Medical School, St. Louis, MO, USA.

Published: October 2010

Heparin cofactor II (HCII) is a plasma protease inhibitor of the serpin family that inactivates thrombin by forming a covalent 1:1 complex. The rate of complex formation increases more than 1000-fold in the presence of dermatan sulfate (DS). Endothelial injury allows circulating HCII to enter the vessel wall, where it binds to DS and presumably becomes activated. Mice that lack HCII develop carotid artery thrombosis more rapidly than wild-type mice after oxidative damage to the endothelium. These mice also have increased arterial neointima formation following mechanical injury and develop more extensive atherosclerotic lesions when made hypercholesterolemic. Similarly, low plasma HCII levels appear to be a risk factor for atherosclerosis and in-stent restenosis in human subjects. These observations suggest that a major function of the HCII-DS system is to regulate the physiologic response to arterial injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1877-1173(10)93015-9DOI Listing

Publication Analysis

Top Keywords

dermatan sulfate
8
heparin cofactor
8
vascular dermatan
4
sulfate heparin
4
cofactor heparin
4
hcii
4
cofactor hcii
4
hcii plasma
4
plasma protease
4
protease inhibitor
4

Similar Publications

Serum CS/DS, IGF-1, and IGFBP-3 as Biomarkers of Cartilage Remodeling in Juvenile Idiopathic Arthritis: Diagnostic and Therapeutic Implications.

Biomolecules

November 2024

Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland.

Cartilage destruction in juvenile idiopathic arthritis (JIA) is diagnosed, often too late, on basis of clinical evaluation and radiographic imaging. This case-control study investigated serum chondroitin/dermatan sulfate (CS/DS) as a potential biochemical marker of cartilage metabolism, aiming to improve early diagnosis and precision treatment for JIA. We also measured the levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) (using ELISA methods) in JIA patients ( = 55) both before and after treatment (prednisone, sulfasalazine, methotrexate, administered together), and analyzed their relationships with CS/DS levels.

View Article and Find Full Text PDF

Matrix glycosaminoglycans and proteoglycans in human cornea organoids and similarities with fetal corneal stages.

Ocul Surf

November 2024

Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA. Electronic address:

Purpose: We developed human cornea organoids (HCOs) from induced pluripotent stem cells (iPSCs) where single-cell RNA-sequence (scRNA-seq) analysis suggested similarity with developing rather than mature human corneas. We performed immunohistology to determine the presence of corneal glycosaminoglycans as an assessment of maturity. We undertook a detailed comparison of the HCO scRNA-seq data with a recent scRNA-seq study of human fetal corneas at different stages to gauge the HCO's maturity.

View Article and Find Full Text PDF

RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • A new mass spectrometry imaging technique allows for the detection and analysis of glycosaminoglycans (GAGs) in retinal tissue, overcoming previous limitations in spatial resolution.
  • By using chondroitinase enzymes, researchers can extract and analyze various GAG oligosaccharides, ranging from disaccharides to hexasaccharides, directly from tissue sections.
  • The study showcases the ability to resolve isomeric GAG oligosaccharides and their sulfation states across different tissue regions using a method called trapped ion mobility spectrometry (TIMS).
View Article and Find Full Text PDF

Introduction: Mucopolysaccharidosis type VI (MPS VI) is a rare inherited metabolic disorder, primarily attributed to the deficiency of the enzyme N-acetylgalactosamine-4-sulfatase, responsible for the degradation of dermatan sulfate and chondroitin-4-sulfate. Therefore, there is a widespread accumulation of partially degraded glycosaminoglycans. Corneal opacification is the hallmark ocular feature in the MPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!