Background: Postnatal expansion of the pancreatic β-cell mass is required to maintain glucose homeostasis immediately after birth. This β-cell expansion is regulated by multiple growth factors, including glucose, insulin, insulin-like growth factor (IGF-1) and epidermal growth factor (EGF). These mitogens signal through several downstream pathways (AKT, ERK, STAT3, and JNK) to regulate the survival and proliferation of β-cells. Survivin, an oncofetal protein with both pro-proliferative and anti-apoptotic properties, is a known transcriptional target of both IGF-1 and EGF in cancer cells. Here, we analyzed the effects of the β-cell mitogens IGF-1 and EGF on survivin regulation in the established pancreatic β-cell model cell lines, MIN6 and INS-1 and in primary mouse islets.
Results: In pancreatic β-cells, treatment with glucose, insulin, or EGF increased survivin protein levels at early time points. By contrast, no significant effects on survivin were observed following IGF-1 treatment. EGF-stimulated increases in survivin protein were abrogated in the presence of downstream inhibitors of the Raf-1/MEK/ERK pathway. EGF had no significant effect on survivin transcription however it prolonged the half-life of the survivin protein and stabilized survivin protein levels by inhibiting surviving ubiquitination.
Conclusions: This study defines a novel mechanism of survivin regulation by EGF through the Raf-1/MEK/ERK pathway in pancreatic β-cells, via prolongation of survivin protein half-life and inhibition of the ubiquitin-mediated proteasomal degradation pathway. This mechanism may be important for regulating β-cell expansion after birth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940765 | PMC |
http://dx.doi.org/10.1186/1471-2199-11-66 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!