Constrained evolutionary optimization by means of (μ + λ)-differential evolution and improved adaptive trade-off model.

Evol Comput

School of Information Science and Engineering, Central South University, Changsha 410083, People's Republic of China.

Published: August 2011

This paper proposes a (μ + λ)-differential evolution and an improved adaptive trade-off model for solving constrained optimization problems. The proposed (μ + λ)-differential evolution adopts three mutation strategies (i.e., rand/1 strategy, current-to-best/1 strategy, and rand/2 strategy) and binomial crossover to generate the offspring population. Moreover, the current-to-best/1 strategy has been improved in this paper to further enhance the global exploration ability by exploiting the feasibility proportion of the last population. Additionally, the improved adaptive trade-off model includes three main situations: the infeasible situation, the semi-feasible situation, and the feasible situation. In each situation, a constraint-handling mechanism is designed based on the characteristics of the current population. By combining the (μ + λ)-differential evolution with the improved adaptive trade-off model, a generic method named (μ + λ)-constrained differential evolution ((μ + λ)-CDE) is developed. The (μ + λ)-CDE is utilized to solve 24 well-known benchmark test functions provided for the special session on constrained real-parameter optimization of the 2006 IEEE Congress on Evolutionary Computation (CEC2006). Experimental results suggest that the (μ + λ)-CDE is very promising for constrained optimization, since it can reach the best known solutions for 23 test functions and is able to successfully solve 21 test functions in all runs. Moreover, in this paper, a self-adaptive version of (μ + λ)-CDE is proposed which is the most competitive algorithm so far among the CEC2006 entries.

Download full-text PDF

Source
http://dx.doi.org/10.1162/EVCO_a_00024DOI Listing

Publication Analysis

Top Keywords

λ-differential evolution
16
improved adaptive
16
adaptive trade-off
16
trade-off model
16
evolution improved
12
test functions
12
constrained optimization
8
current-to-best/1 strategy
8
evolution
5
improved
5

Similar Publications

Background: Myogenic factor 6 (Myf6) plays an important role in muscle growth and differentiation. In aquatic animals and livestock, Myf6 contributes to improving meat quality and strengthening the accumulation of muscle flavor substances. However, studies on Myf6 gene polymorphisms in crustaceans have not been reported.

View Article and Find Full Text PDF

The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2).

View Article and Find Full Text PDF

Functional and evolutionary analysis of key enzymes triacylglycerol lipase, glycogen hydrolases in the glycerol and glucose biosynthesis pathway and cellular chaperones for freeze-tolerance of the Rice stem borer, Chilo suppressalis.

Int J Biol Macromol

December 2024

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan Laboratory, College of Plant Science and Technology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China. Electronic address:

Freeze-tolerance is an important physiological trait for terrestrial environmental adaptation and intraspecific geographic-lineage diversification in ectothermic animals, yet there remains a lack of systematic studies on its underlying genetic mechanisms and evolution. To address this problem, we employed the widely distributed rice pest, the Chilo suppressalis, as a model to explore the genetic mechanisms and evolutionary history of freeze-tolerance. First, we systematically characterized its antifreeze mechanisms by performing functional validation of potential key genes in laboratory-reared lines.

View Article and Find Full Text PDF
Article Synopsis
  • Sixty-six MADS-box genes were identified in the Coptis teeta genome, primarily categorized into type I and type II, with most being type I.
  • Four pairs of gene duplications were found, indicating these genes may have been conserved through evolution, as suggested by low Ka/Ks ratios.
  • Differential expression of 38 MADS-box genes was observed between male and female floral phenotypes, providing new insights into floral development mechanisms in this medicinal plant.
View Article and Find Full Text PDF

Ozone stress-induced DNA methylation variations and their transgenerational inheritance in foxtail millet.

Front Plant Sci

September 2024

Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China.

Elevated near-surface ozone (O) concentrations have surpassed the tolerance limits of plants, significantly impacting crop growth and yield. To mitigate ozone pollution, plants must evolve a rapid and effective defense mechanism to alleviate ozone-induced damage. DNA methylation, as one of the most crucial epigenetic modifications, plays a pivotal role in maintaining gene stability, regulating gene expression, and enhancing plant resilience to environmental stressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!